Phosphoglycerate-transporter Protein B as a Most Primitive Protein Predicted by the Poly-tRNA Theory

Koji Ohnishi

ohnishi@sc.niigata-u.ac.jp
Department of Biology, Faculty of Science, Niigata University
Ikarashi-2, Niigata, 950-2181, Japan

1 Introduction

The poly-tRNA model can clearly explain how early tRNAs (= tRNA ribo-organisms) had associated tandemly to make trrnD-operon-type and rrnD-operon-type poly-tRNA structures which could have evolved as RNA-machines for synthesizing trrnD-type and rrnB-type peptides. The trrnD-peptide is defined as a hypothetical peptide whose amino acid (aa) sequence is exactly the same order of the aa-specificities of the 16 tRNAs in the tRNA gene cluster within the Bacillus subtilis trrnD operon. In hitherto published findings, Glycyl-tRNA synthetase (Gly-RS) alpha chain shows a closest similarity to the trrnD-peptide [3].

2 Methods

Amino acid sequences similar to the trrnD peptide, "NSEVMDFTYWHQGCLL" were searched for from Swiss Plot and PIR protein sequence databases using FASTA program [1]. trrnD-mRNA is defined as a 48-base RNA complementary to the 64-base RNA consisting of the 16 anticodons of the 16 tRNAs in the trrnD-poly-tRNA (Fig. 1).

3 Results and Discussions

Phosphoglycerate-transporter protein B (pgtB) (aa's 87-103) from Salmonella typhimurium (ST) was found to show the closest similarity to the trrnD-peptide. The DNA sequence region encoding the aa's 87-103 of the pgtB protein was aligned with the trrnD-mRNA, the E. coli GlyS gene segment encoding the aa's 139-154, Synecococcus sp. F0-ATP synthese a gene, and tRNA-Gly's and tRNA-Met (Fig. 1). The trrnD-mRNA* was so defined by replacing some bases (of trrnD-mRNA) by those bases capable of making wobble-pairing with theanticodons, that could give higher base-matches to the pgtB and GlyS genes (See Fig. 1). The trrnD-mRNA* was thus found to show a 71.7% base-match to the pgtB gene, and 67.0% to the GlyS gene. The "eo-protein", "NSEVXDFTYWQQGCLL", was concluded to be an earliest protein predicted by these analyses (Fig. 1). These results strongly confirms the prediction by the poly-tRNA theory.

References

- [1] Pearson, W.R. and Lipman, D.J., Improved tools for biological sequence comparison, *Proc. Nat. Acad. Sci. USA*, 85:2444–2448, 1988.
- [2] Ohnishi, K., Tanaka, H., and Yanagawa, H., The origin of DNA-binding domains, as viewed from poly-tRNA theory, *Nucleic Acids Symp.*, Ser. 39:251–252, 1998.
- [3] Ohnishi, K. et al., Origin and evolution of early peptide-synthesizing biomachines by means of hierarchical sociogenesis of intracellular primitive tRNA-riboorganisms, *Proc. of the 4th Int. Symp. on Artificial Life and Robotics*, submitted.

(trrnD-peptide)	1	N	S	E	٧	M	D	F	T	Y	W	H	0	G	C	L	L	16				
16 anticodons	3'	UUG	AGG	cuu	CAU	UAC	CUG	AAG	UGU	AUG	ACC	GUG	GUU	CCG	ACG	AAU	A-AC	5'				
		111	111	111	111	111	111	111	111	111	m	111	111	111	111	111	1 11		(*1	" = Watson-Cri	ck type base-pairing	
trrnD-mRNA	5'	aac	ucc	gaa	gua	aug	gac	uuc	aca	uac	ugg	cac	caa	ggc	ugc	uua	u-ug	3'				
	1	N	s	E	v	м	D	F	T	¥	W	H	Q	G	c	L	L	16				
(trrnD-peptide)	1	N	s	E	v	м	D	F	T	Y	w	н	0	G	c	L	L	16				
16 anticodons	3'	UUG	AGG	CUU	CAU	UAC	CUG	AAG	UGU	AUG	ACC	GUG	GUU	CCG	ACG	AAU	A-AC	5'				
		11*	111	111	111	111	11*	111	111	111	111	111	11*	11*	111	111	1 11		(*** = wobble p	miring)	
trrnD-mRNA*	5'	AAU	UCC	GAA	GTA	AUG	GAU	UUC	ACU	UAC	UGG	CAC	CAG	GGÜ	UGC	UUA	U-UG	3'				
	1	N	s	E	v	M	D	F	T	¥	W	H	0	G	c	L	L	16				
												4								BASE-MATCH to ;		
																				trrnD-mRNA	trrnD-mRNA*	
		AAT	TCG	GAA	GTA	XAG.	GAT	TIT	ACT	TAC	TGG	CAG	CAG	GGT	TGC	TGX				73.3%(33/45)	84.4%(38/45)	
eo-protein (hypothetical)	1	N	s	E	v	x	D	F	T	¥	W	Q	Q	G	c	L?	L	16				
pgtB, S. typhimurium		AAT	<u>TC</u> G	CTG	GTA	CAG	GAT	TIT	AC-	<u>c</u>	TGG	CAG	CAG	GGGZ	ACGC	TGC	T-CG	AT		60.9%(28/46)	71.7%(33/46)	
	78	N	8	L	_v_	Q	D	F	T		W	Q	0	G	T .	L	L	D 1	03			
GlyS alpha, E. coli		GGC	ATG	GAA	GTG	ACG	CAG	TTC	ACT	TAC	TTC	CAG	CA-	GGT	TGG	TGG	TCTG			63.8%(30/47)	67.0% (31/47)	
	139	G	М	E	V	T	0	F	T	Y	F	0	0	v	G	G	L	1	54			
FO-ATPase a(Synechococcus	9)	GAGC	TC-	GAG	GTC	GCC	CĀG	CAT	TTT	TAC	TGG	CAG	ATC	GG-						54.1%(20/37)	54.1% (20/37)	
	28	E	L	E	v	G	Q	H	F	Y	W	0	I	G	40							
tRNA-Gly, B. subtilis trrni	D -3	aat	G <u>C</u> G	GAA	GIA	GIT	C¥G	I	<u>G</u> G−	TAG	A-A	CAC	CA-	CCI	TGC	CAA	GG <u>TG</u>	4	1	58.1%(25/43)	62.8%(27/43)	
ERNA-Gly, Mycopl.pneumo.	-3	tgc	gÇA	GAT	ATA	GIT	CAA	Ī	GG-	CAG	A-A	CAT	AA-	CCT	TGC	CAA	GGIT	4	1			
tRNA-Gly, E. coli	1		GCG	GGC	ATC	GTA	TAA	I	GGC	TAT	T-A	CCT	CAG	CCT	T-C	CAA	GCTG	4	2			
tRNA-Gly-3, H. valcanii	1		GCG	ccē	ATG	GTC	TCC	AGT	GG-	TAG	G-A	CAC	GAG	CIŢ	c-c	CAA	GCŢC	4	3			
tRNA-Met, B. subtilis trrni	0 1		cec	GGG	GIG	GAG	CAG	TTC	GG-	TAG	C-T	CGT	C-G	GGC	T-C	ATA	ACCC	4	2	48.8%(20/41)	51.2%(21/41)	

Figure 1: Alignment of trrnD-mRNA with pgtB (Salmonella typhimurium) and GlyS (E. coli) genes. (Based on ref. [3]). Base- and amino acid-matches to trrnD-mRNA and trrnD-peptide are underlined. Base complementarities of Watson-Crick type and wobble type are indicated by "—" and "*", respectively. The rrnB-mRNA(*) is homologous to pgtB, GlyS, and tRNA-Gly. Double-underlines denote bases capable of making wobble-pairing with trrnD-mRNA.