September 4, 2009 15:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in 43-Seo

A METHOD FOR EFFICIENT EXECUTION OF
BIOINFORMATICS WORKFLOWS

JUNYA SEO! YOSHIYUKI KIDO? SHIGETO SENO!
j—seo@ist.osaka-u.ac.jp y-kido@ist.osaka-u.ac.jp senoo@ist.osaka-u.ac. jp

YOICHI TAKENAKA! HIDEO MATSUDA!

takenaka@ist.osaka-u.ac.jp matsuda@ist.osaka-u.ac.jp

I Department of Bioinformatic Engineering, Graduate School of Information Science
and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

2The Center for Advanced Medical Engineering and Informatics, Osaka University,
2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

Efficient execution of data-intensive workflows has been playing an important role in
bioinformatics as the amount of data has been rapidly increasing. The execution of such
workflows must take into account the volume and pattern of communication. When
orchestrating data-centric workflows, a centralized workflow engine can become a bottle-
neck to performance. To cope with the bottleneck, a hybrid approach with choreography
for data management of workflows is proposed. However, when a workflow includes many
repetitive operations, the approach might not gain good performance because of the over-
heads of its additional mechanism. This paper presents and evaluates an improvement
of the hybrid approach for managing a large amount of data. The performance of the
proposed method is demonstrated by measuring execution times of example workflows.

Keywords: web service, workflow, data transfer, database.

1. Introduction

Efficiently executing large-scale and data-intensive workflows common to scientific
applications must take into account the volume and pattern of communication.
Traditionally, two common architectures for implementing workflow are proposed.
Those are centralized orchestration and choreography [3].

Figure 1 shows the two traditional architectures. Centralized orchestration de-
scribes how services can interact at the message level, with an explicit definition
of the control and data flows. This architecture has a workflow engine to execute
workflows. The engine acts as a controller of the involved services. Both control
and data flow messages are passed through this central engine. Examples of such
engines in bioinformatics domain are Taverna [6] and Triana [8].

On the other hand, a choreography model describes a peer-to-peer collaboration
between collections of services. This architecture basically does not have a central-
ized engine that controls workflows. Choreography focuses on message exchange, all
involved services are aware of their partners and when to invoke operations. The

September 4, 2009 15:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in 43-Seo

2 J. Seo et al.

Centralized Choreography
Orchestration % &
L]

EEEEEEETES

v
[Web Service] L Web Service] [Web Service] [Web Service H Web Service H Web Service]

Data Flow -===--- Workflow Control

Fig. 1. Traditional architectures for workflow execution.

Hybrid
7 w
- A S~
fz" 1 \‘s
Z” A 4 _‘
Proxy Proxy Proxy

¥ b lé

L Web Service] [Web Service] [Web Service]

Data Flow r====--= Workflow Control

Fig. 2. Hybrid architecture of centralized orchestration and choreography.

Web Services Choreography Description Language (WS-CDL) [4] is an XML-based
language for describing this model.

Centralized control is suitable for scientific workflows because those workflows
contain many services with complicated controls (such as conditional branches).
However, in a centralized engine, every resulting output of each service is sent back
to the engine. Thus the engine can easily become a performance bottleneck by the
concentration of returning data. While a choreography architecture can optimize
data transport between services, but the implementation of this architecture is
highly complex and rigid.

Baker et al. proposes a hybrid architecture that combines an orchestration with
a centralized controller (a workflow engine) and a choreography model of distributed
data transport [2]. Figure 2 shows an image of the architecture. The architecture
mixes benefits of the above two architectures. It introduces proxies between Web
services and a workflow engine. The engine sends a request to a proxy instead of
a service. The proxy invokes the service and save its result to a local storage, and
returns a unique ID of the result to the engine. The result (intermediate data) is
not sent back to the engine but is transferred directly to other proxies according
to the data flow in the workflow. Therefore the engine does not have to receive the
intermediate data to be sent to the next service.

In this paper, we propose a modification of the hybrid architecture. The hybrid

September 4, 2009 15:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in 43-Seo

Efficient Ezecution of Bioinformatics Workflows 3

1
1. Invoke 1

1 I6 Deliver N
5. ReturnID | o, ACK . 15. Return ID
LT 11. Invoke Ny
! \
1
1 \
8. Transfer /
4. Save > 14. Save
S o 7. Stage —-—
| T em - |
2. Invoke 1 9. ACK 1 12. Invoke

3. Return Result 113, Return Result
1 1

Fig. 3. Execution steps of a workflow with two Web services in the original hybrid architecture.

architecture can suppress the amount of data transfer by removal of the transfer
to/from the engine. Thus its performance is highly improved when the amount of
the resulting output of each service is very large. However, some overheads exist in
the hybrid architecture at the proxies. When it is adopted to a workflow including
repetitive operations (such as loop operations), the engine need to frequently inter-
act with proxies for invoking services and transferring their results to other proxies.
We change the protocol between the engine and proxies for reducing the overheads
as described in Sec. 3.

2. Workflow Operations in Hybrid Architecture

Workflows are frequently used in various scientific fields. Especially, in the bioinfor-
matics domain, workflows can be used for integrating a number of remote resources
in terms of data and applications [1]. Many analysis tools are available as Web
services from EBI [5, 9], DDBJ [10], and KEGG [11]. Scientists often use several
databases for their analyses and compose workflows with several Web services that
are distributed geographically.

Figure 3 shows the execution steps in a workflow containing two Web services
in the hybrid architecture [2]. Those steps are described as follows in detail.

1: A workflow engine invokes a proxy to make an invocation to a Web service
(Fig. 3 left).
2: The proxy invokes the Web service.

3-4: The proxy receives the result of the service, and save it within the proxy.
There is a requirement that the proxy has enough disk space to store the
result.

5: The engine receives only the ID of the result from the proxy instead of its
whole data.

September 4, 2009 15:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in 43-Seo

4 J. Seo et al.

1. Invoke !
nvexe : \\\10. Return ID
5. Return ID | 6. Invoke®
1 AN
4. Transfer
Proxy >»{ Proxy) 9.Save
1 I
2. Invoke 1 1 7. Invoke
3. Return Result: :8- Return Result

Web Service Web Service

Fig. 4. Modified execution steps of a workflow in the proposed hybrid architecture.

6: The engine invokes the proxy again to make transfer the result (the operation
is named deliver in Fig. 3).

7: The proxy invokes another proxy (Fig. 3 right) to notify data transfer.

8: The second proxy receives the result from the first proxy (the operation is
named stage in Fig. 3).

9-10: After the data transfer finished, the second proxy returns acknowledgment
to the first proxy, and the first one also returns it to the engine.

11-15: The engine invokes the second proxy with the ID, and the second proxy
invokes another Web service.

As shown in Fig. 3, additional invocation steps are necessary compared with
a centralized orchestration (2, 6, 7, and 12). If the workflow includes repetitive
operations, those extra invocations are carried out at the number of repeats. The
extra invocations may increase the processing time of the workflow.

3. Improved Method

As the amount of biological databases has been increasing rapidly, the data to
be managed in workflows has also been increasing. Those databases contain huge
numbers of entries. For example, there are over 9 million entries are registered in the
UniprotKB database [12]. When scientists want to analyze such a huge number of
data in their workflows with Web services, repetitive invocations of the services are
occurred. If they use several databases in combination, the total number of resulting
data should be very large. Those repetitive invocations in a workflow cause large
overheads in the hybrid architecture.

To decrease the number of the extra operations described in the previous section,
we present a modification to change the execution steps in the hybrid architecture.
The modified execution steps are described as the followings (see Fig. 4).

September 4, 2009 15:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in 43-Seo

Efficient Execution of Bioinformatics Workflows 5

1: A workflow engine invokes a proxy to make an invocation to a Web service
(Fig. 4 left).

2: The proxy invokes the Web service.

3-4: The proxy receives the result of the service, and transfers it to another proxy
(Fig. 4 right).

5: The engine receives only the ID of the result from the first proxy instead of
its whole data.

6-11: The engine invokes the second proxy with the ID, and the second proxy
invokes its Web service. If it is not necessary to transfer the result of the
Web service to other proxies, the proxy saves the result within the proxy.

In the proposed modification of the execution steps, we decrease overhead at the
following two points:

e Transfer the result of a Web service to the next proxy directly.
A proxy transfers the result to the next proxy directly. In this case, the proxy
does not need to save the result within the proxy. Thus one step is removed
from previous hybrid architecture (Step 4 in Fig. 3).

e Remove deliver and stage operations.
By transferring the result directly, the workflow engine and the first proxy
does not need to invoke the first proxy and the second proxy, respectively,
to make transfer the result. Thus deliver and stage operations and receiving
their acknowledgments (Steps 6, 7, 9 and 10 in Fig. 3) can be removed.

Totally we can remove two Web service invocations and one data saving within
the first proxy. The proxy we have proposed is deployed as a Web service as the
same as the original hybrid architecture. Figure 5 shows the deployed operation in
our proxy. Our proxy has only one operation to invoke a Web service and to make
data transfer.

The operation “invoke” receives 4 arguments. “wsdl”, “operation” and “args”
are the same as those in the original hybrid architecture. There is a difference at
argument “returns”. Our operation can handle multiple results so that the workflow
engine can extract resulting data to be returned. The destination information of the
data transfer is also included in “returns” like:

resultA->hybrid.ist.osaka-u.ac.jp
resultB->http://hybrid.ist.osaka-u.ac.jp:8080/axis2/services/Hybrid?wsdl

Users can specify transferring destination as its host name or WSDL location.
Users also can specify different destinations in each result.

September 4, 2009 15:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in 43-Seo

6 J. Seo et al.

public String[] invoke(String wsdl, String operation, String[] args, String[] returns);
* “wsdl” is WSDL location of a web service.
* “operation” is operation name in the web service.
* “args” is a list of arguments.
* “returns” is a list of return values and target address to transfer the result.

This operation returns a list of IDs corresponding to the values specified in “returns”

Fig. 5. Deployed operation in the modified proxy.

4. Experimental Result
4.1. Experiment with Test Web Services

In order to evaluate the proposed method, we have carried out performance analysis
tests. In this analysis test, we prepared two test Web services.

e WS1 (Data Generate Service): This service receives an integer as its pa-
rameter, and generates a random string whose length is the parameter and
returns them.

e WS2 (Echo Size Service): This service receives a string and returns its size.

We set two proxies and one workflow engine. The two proxies are located in the
same local area network to the two Web services, respectively. The engine is set at a
distant place from those proxies so that the engine communicates with the proxies
through a wide area network. We composed a simple workflow that generates a
string and counts the size. First, the engine calls WS1 and gets a string. After that,
the engine passes the string to WS2.

We compare our method with a centralized orchestration and the original hybrid
architecture changing the data size and the number of data.

Figure 6 shows the result of small data in the experiment. The data size varies
from 1k to 1000k bytes per 100k bytes. In this experiment, the workflow handles
only one single data.

In both the original and the proposed hybrid architectures, there is an initial
overhead when the workflow engine invokes a proxy instead of a Web service, but
the data transfer time sending its result back to the engine can be reduced since the
result can send it to another Web service via their proxies without sending through
the engine. It is to be noted that we assume a Web service and its proxy are located
within the same local area network and the data transfer speed between them is
fast.

If the size of the resulting data is larger, the data transfer overhead via the engine
is getting larger in the centralized orchestration architecture. Thus the execution
time of the centralized one is longer than those of the two types of the hybrid
architecture when transferring data size is more than 400k bytes as shown in Fig. 6.

September 4, 2009 15:51

WSPC - Proceedings Trim Size: 9.75in x 6.5in 43-Seo

Efficient Ezecution of Bioinformatics Workflows

1600
1400 /
& 1200
é A/
= 1000 —
a
o 800
©
w
> 600
S
iZ 400
200
0 T T T T T T T T T)
1 100 200 300 400 500 600 700 800 900 1000
Data Size (kB)
=o—Centralized Original Hybrid =#—Proposed Hybrid
Fig. 6. Execution times on small data.
25000
20000
@
E
o 15000
&
Qo
«©
w 10000
[}
£
'_
o M
o+—r—r—r—rrr—T—TTTTrTrTr T
1234567 8 91011121314151617181920
Data Size (MB)
=¢=Centralized Original Hybrid =#=Proposed Hybrid

Fig. 7. Execution times on large data.

7

Figure 7 shows larger data pattern in the experiment. From the result, both the
original and proposed hybrid architectures achieve higher performance compared
with the centralized orchestration. This indicates that the hybrid architecture is
suited for workflows having larger data communication between Web services. In
both of small and large data patterns, Figs. 6 and 7 show that the proposed ar-
chitecture takes slightly shorter execution time compared with that in the original
hybrid architecture.

Figure 8 shows performance result on the number of data. We measured it for
five types of the data of which numbers ranging from 1 to 500. In all the cases, the

September 4, 2009 15:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in 43-Seo

8 J. Seo et al.

800000

700000

600000

500000

400000 —

300000

Time Elapsed (ms)

200000

100000

0 r = r
1 5 10 50 100 500
Number of Data

H Centralized Original Hybrid ™ Proposed Hybrid

Fig. 8. Execution times on the number of data.

data size is set to 1M bytes. Figure 8 shows that, the proposed hybrid architecture
achieves higher-performance compared with the other ones when the number of
data is getting larger due to the reduction of the execution steps in the proposed
architecture.

The performance at a large number of data is important since there are often
many repetitive operations in bioinformatics workflows when they process a large
number of data (such as, data for genes and proteins). The proposed architecture
is suitable for the situation managing such many repetitive operations.

On the other hand, the proposed architecture contains the same overhead in
invoking proxies as the original hybrid architecture. If the data for each operation
is small (less than 400k bytes) in its size, the centralized orchestration architecture
gains better performance.

4.2. Experiment with Bioinformatics Web Services in Distributed
Environment

We measured performance for executing a workflow composed of bioinformatics
Web services. The Web services we used are getEntry and cpgreport. The getEntry
service receives an entry ID of the DDBJ sequence database [10] and returns the
content of the entry identified with the ID. Whereas, the cpgreport service receives
a nucleotide sequence data and returns the locations of CpG-rich regions in the
sequence. The service was built by using the EBI Soaplab Web Services [7] for the
EMBOSS programs [13].

For this experiment, we used the following two sets of DDBJ entries. For ex-
tracting the above DDBJ entries associated with the GO terms, we used the ARSA

September 4, 2009 15:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in 43-Seo

Efficient Ezecution of Bioinformatics Workflows 9

Table 1. Execution times of bioinformatics Web services

Data set Data size Centralized ® Original hybrid ® Proposed hybrid #

Set 1 190MB 410 308 250
Set 2 293MB 703 638 532

Note: * Measured in seconds.

service at the DDBJ Web services. The execution time of the ARSA service is not
included in the experiment.

e Set 1: 190 DDBJ entries associated with Gene Ontology GO:0007010 (cy-
toskeleton organization).

e Set 2: 466 DDBJ entries associated with Gene Ontology GO:0016747 (trans-
ferase activity, transferring acyl groups other than amino-acyl groups).

The workflow invoking the two Web services is carried out with many repetitive
operations. Both services are invoked at the number of the DDBJ entries of the
above sets. The data size of each entry ranges from 1k to 5M bytes.

We placed a workflow engine at the National Institute of Informatics, Tokyo, and
two Web services at the two campuses (Suita and Toyonaka) of Osaka University,
Osaka. In both the original and the proposed hybrid architectures, proxies are placed
one by one at the same local area network of the Web services. The average round
trip times are 10.1 ms (milliseconds) between Tokyo and Suita, and 1.1 ms between
Suita and Toyonaka. The average file-transfer speeds measured with FTP are 37
Mbps between Tokyo and Suita, 94 Mbps between Suita and Toyonaka. The engine
and Web services are composed of Linux workstations with Intel Xeon or Core 2
Duo CPUs (2.0GHz or 2.53GHz clock). The Web services were developed in Java,
with the Apache/Tomcat software.

Table 1 shows the execution times of the workflow in the distributed environ-
ment. “Data size” in Table 1 means the total amount of the output of the getEntry
service. According to Table 1, the proposed hybrid architecture gains better perfor-
mance than those of the other architectures when a bioinformatics workflow to be
executed has many repetitive operations.

5. Discussion

We have proposed a modification of the hybrid architecture for workflow execu-
tion, which is suitable for bioinformatics workflows including repetitive invocations.
When the number of data is increased, the advantage of the proposed architecture
is also increased.

The data size is important to select the architecture for workflow execution.
The experiment results show that the centralized orchestration has advantage if the
amount of data to be transferred in a workflow is relatively small. If a workflow
need to transfer large data between distantly-located Web services to be invoked at

September 4, 2009

15:51 WSPC - Proceedings Trim Size: 9.75in x 6.5in 43-Seo

10 J. Seo et al.

a number of times, our architecture gains better performance.

In this paper, we evaluated only simple repeat patterns of workflows. More types

of scientific workflows including conditional branches should be evaluated as future
works. For example, when a workflow includes a conditional branch and it need to
select the destination of the data transfer by analyzing the result of a Web service,
the proxy of the Web service cannot simply decide the destination of the transfer.
We will consider the further improvement of the architecture for resolving this issue
in the future.

References

1]

2]

Addis, M., Ferris, J., Greenwood, M., Li, P., Marvin, D., Oinn T., and Wipat, A.,
Experiences with e-Science workflow specification and enactment in bioinformatics,
Proc. UK e-Science All Hands Meeting, 459-466, 2003.

Baker, A., Weissman, J., and Hemert, J., Eliminating the middleman: peer-to-peer
dataflow, Proc. 17th Intl Symp. High Performance Distributed Computing, 5564,
2008.

de Knikker, R., Guo, Y., Jin-long L., Kwan, A. K. H., Yip, K. Y., Cheung, D. W,
and Cheung, K.-H., A web services choreography scenario for interoperating bioin-
formatics applications, BMC' Bioinformatics, 5(25), 2004.

Kavantzas, N., et al., Web services Choreography Description Language (WS-CDL)
Version 1.0, 2005.

Lbabarga, A., Valentin, F., Anderson, M., and Lopez, R., Web services at the Euro-
pean Bioinformatics Institute, Nucleic Acids Research, 35:6—11, 2007.

Oinn, T., et al., Taverna: a tool for the composition and enactment of bioinformatics
workflows, Bioinformatics, 20:3045-3054, 2004.

Senger M., Rice P., Bleasby A., and Uludag M., Soaplab: open source web ser-
vices framework for bioinformatics programs, Proc. 10th Annual Bioinformatics Open
Source Conf., 2009.

Taylor, I., Shields, M., Wang, 1., and Philp, R., Distributed P2P computing within
Triana: a galaxy visualization test case, Proc. IPDPS 2003, 16-27, 2003.
http://www.ebi.ac.uk/Tools/webservices/
http://www.xml.nig.ac.jp/index.html

http://wuw.genome. jp/kegg/soap/

http://www.uniprot.org/help/uniprotkb

http://emboss.sourceforge.net/

