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Nucleosome configuration in eukaryotic genomes is an important clue to clarify the mechanisms of 
regulation for various nuclear events. In the past few years, numerous computational tools have been 
developed for the prediction of nucleosome positioning, but there is no third-party benchmark about 
their performance. Here we present a performance evaluation using genome-scale in vivo 
nucleosome maps of two vertebrates and three invertebrates. In our measurement, two recently 
updated versions of Segal’s model and Gupta’s SVM with the RBF kernel, which was not 
implemented originally, showed higher prediction accuracy although their performances differ 
significantly in the prediction of medaka fish and candida yeast. The cross-species prediction results 
using Gupta’s SVM also suggested rather specific characters of nucleosomal DNAs in medaka and 
budding yeast. With the analyses for over- and under-representation of DNA oligomers, we found 
both general and species-specific motifs in nucleosomal and linker DNAs. The oligomers commonly 
enriched in all five eukaryotes were only CA/TG and AC/GT. Thus, to achieve relatively high 
performance for a species, it is desirable to prepare the training data from the same species. 
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1. Introduction  

Chromosomes of eukaryotes are composed of nucleosome arrays. By affecting the access 
of regulatory factors to DNA, nucleosomes are involved in various nuclear functions, 
such as transcription, replication and DNA repair. 

It is known that nucleosome formation depends on local DNA sequence more or less. 
Several motifs favoring and inhibiting nucleosome formation have been detected by in 
vivo or in vitro experiments. As a typical instance, short nucleotides, such as AA/TT and 
GC, appear at about 10-bp interval in nucleosomal DNAs of several species [1, 2]. They 
are associated with the positions of the minor and major grooves facing with the histone 
surface and are associated with the bendability of DNA during nucleosome formation. 
On the other hand, several consecutive oligonucleotides, such as (A)n/(T)n and (CG)n, are 
reported to prevent DNA sequence from forming nucleosomes via their conformational 
change [2, 3]. It has also been reported that (CG)n promotes the formation of the left-
handed Z-DNA conformation [4]. 

These sequence dependencies suggest the possibility of predicting nucleosome 
locations computationally. Recently, several prediction tools have been developed for the 
genome sequence of budding yeast and few other organisms [5-12]. For example, Segal 
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et al. made position weight matrices that characterize periodic patterns of specific 
dinucleotides from about two hundred nucleosomal DNA sequences and scanned them 
with the dynamic programming method throughout the yeast genome [1]. Using this 
model, they suggested that about 50% of nucleosome placements are prefigured by 
genome sequence. Furthermore, they have recently updated their methodology by adding 
the preference of 5-bp short sequences in nucleosome-poor regions and have showed 
high correlations with in vivo and in vitro nucleosome distributions [11, 12]. 

 Mielle et al. focused on the intrinsic bendability of DNA sequence and constructed a 
physical model of the DNA bending around the histone octamer [6]. Their method 
calculates the free energy of a DNA fragment to form the ideal curved structure without 
any training procedure. In promoter regions, the energy was highly correlated with the 
nucleosome occupancy, and the energy profile was conserved from Drosophila 
melanogaster to Saccharomyces cerevisiae. 

 Peckham et al. and Gupta et al. introduced Support Vector Machines (SVMs) to 
classify the nucleosomal and non-nucleosomal DNAs [10]. Using the 1,000 highest and 
the lowest scoring probes in nucleosome tiling arrays, they calculated the frequency of 
2,772 all possible oligomers (from 1- to 6-mers). The SVM trained by these frequencies 
showed a good agreement with experimental data and they proposed several oligomers 
for the distinction between nucleosome formation and exclusion.  

Thus, numerous tools for nucleosome positioning are currently available. However, 
users do not know which algorithm is more accurate in predicting in vivo nucleosome 
distribution or to which organisms these methods are applicable or inapplicable. To 
clarify these points, we evaluated the prediction accuracy of representative algorithms 
from three typical classes of prediction methods: Segal’s methods [1, 11, 12], which are 
mainly based on the 10-bp sequence periodicity; Miele’s method [6], which is based on 
the physical property of DNA; and Gupta’s SVM method [10], which relies on the 
statistic of oligomer frequency. Using the genome-scale in vivo nucleosome maps in 
human, medaka fish, nematode, candida yeast and budding yeast, we show the difference 
of prediction performance among them. 

2. Materials and Methods 

2.1. Genome-Scale Nucleosome Maps 

The genome sequences of four organisms (hg18, oryLat2, ce6 and sacCer1) were 
obtained from the UCSC database. The candida genome sequence was obtained from the 
website of Eran Segal’s laboratory. 

Raw nucleosomal DNA sequences in human (SRA000234), medaka (SRA002449) 
and nematode (SRA001023) were downloaded from the Short Read Archive database 
[13-15]. The human nucleosome tags in activated T cells were mapped to the genome by 
SeqMap [16], and the tags in medaka and nematode were mapped by MAQ with the 
allowance of 3-bp mismatch. Nucleosome tags mapped to the candida and budding yeast 
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genomes were obtained from E. Segal’s website [17]. Then, the uniquely mapped tags 
were used for determining the nucleosome locations by our own Hidden Markov Model 
(HMM), which uses the gradient of signals instead of intensity (Tanaka, Yoshimura and 
Nakai, submitted). As shown in the manuscript, the numbers and positions of allocated 
nucleosomes by our HMM were close to those of originally reported assignments. For 
parameter estimation of the HMM, 100 randomly selected regions of 10,000 bp, where at 
least one tag was observed at the 1000-bp interval, were used in each organism. Finally, 
we assigned 13,737,718, 3,480,027, 453,011, 54,971 and 56,172 nucleosomes in human, 
medaka, nematode, candida and yeast, respectively.  

As an original training dataset in Gupta’s method, we downloaded probe sequences 
in tiling array data provided by Ozsolak et al. from the website of William Stafford 
Noble’s laboratory [18]. 

2.2. Application of Prediction Algorithms 

As a positive and negative datasets, we randomly extracted 100 nucleosomal and 100 
linker DNA sequences from the genome-scale nucleosome maps, respectively. In this 
study, we used only sequences whose lengths were from 100 bp to 200 bp. Since the 
nucleosome maps were constructed from short DNA tags, we did not use sequences 
containing repetitive elements. These processes were repeated 10 times. 

We applied each prediction algorithm to 10 evaluation datasets. In Segal’s method, 
we tested all of its three versions (ver. 1-3) with default parameters. Since the original 
authors recommend for users to add flanking regions for avoiding boundary effects, we 
added 5000-bp regions at both sides to the test datasets. If the scores within +/-10 bp of a 
nucleosome start site exceeded a cutoff value, we regarded that the nucleosome is 
correctly predicted by this model. For the evaluation of the ver.1, we used its yeast model. 

In Miele’s method, the unsigned average of all output free energies for each input 
fragment was used. If this value exceeds a cutoff score, we defined that the nucleosome 
is correctly predicted. 

In Gupta’s method, the discriminant value of SVM was used. We performed a 10-
fold cross validation test: for the prediction of each test dataset, the other nine datasets 
were used for training parameters of SVM. Although a linear kernel (p = 1 and β = 0) 
was used in the original article, we tested additional five other kernels: quadratic (p = 2 
and β = 1), cubic (p = 3 and β = 1) and three types of Radial Basis Function (RBF) 
kernel (γ = 1, 5 and 10), which we call RBF1, RBF5 and RBF10, respectively. 
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2.3. Receiver Operating Characteristic (ROC) Curve 

The fitness of each prediction method to experimental data was measured by the ROC 
curve and the Area Under the Curve (AUC) value. This measurement is useful for 
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comparing the prediction performance of two or more tests simultaneously and 
graphically. The 0.5 of AUC is equivalent to random prediction. For each test, the curve 
was drawn by the averaged sensitivity/specificity of 10 evaluation datasets under various 
cutoff values, and the average AUC was used as a measure of the prediction accuracy. 

2.4. Over- and Under-Represented Oligomers  

Frequencies of 2,772-oligomers were calculated from 10 evaluation datasets as in Gupta 
et al. [10]. For each oligomer, its over- and under-representation in nucleosomal DNA 
compared with non-nucleosomal DNA were evaluated by one-tailed Welch t test. 

3 Results and Discussion 

3.1 Prediction Ability of Each Algorithm for Overall Nucleosomes  

 
Figure 1: ROC curves of prediction methods for five organisms 

 
Figure 1 shows the ROC curves of all three algorithms with several options. The results 
are rather varied for different organisms. In predicting nucleosomes of the three 
invertebrates, vers.2 and 3 of Segal’s method show more than 0.700 AUC values 
(Supplementary Table 1). In particular, the highest AUC was observed in yeast. On the 
other hand, the AUC for medaka data was the worst, which was not largely different 
from random prediction. Except for medaka, the first version was worse than the other 
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new versions. The two recently updated versions showed almost equal prediction 
accuracy. On average, the AUC of ver. 2 is slightly higher than that of ver. 3. 

Miele’s model did not work well in all organisms by our evaluation test. 
Among the three algorithms, Gupta’s SVM was the best in human, medaka, 

nematode and yeast. The RBF kernels were better than the polynomial kernels in all 
parameters and species. While the prediction accuracy for the three parameters was 
similar in each organism, RBF1 showed the highest AUC in human, medaka, and yeast 
nucleosomes in all six kernels. It was also the best on the average of all species. 
Comparing the prediction performance between Gupta’s SVM with the RBF1 kernel and 
the ver. 2 of Segal’s method, there were no significant difference in human, nematode 
and yeast. However, Gupta’s SVM was significantly better in medaka while Segal’s 
method was better in candida (P < 0.001 by Wilcoxon test). 

It is possible that the high prediction accuracy of Gupta’s method is specific to the 
data source for model training. Therefore, we further analyzed the prediction 
performance of Gupta’s SVM (RBF1) trained by Ozsolak et al.’s human tilling array data 
[18]. By applying the SVM trained by the Ozsolak data to the above evaluation dataset in 
human (Schones et al.’s data), the average AUC was 0.697, which was not significantly 
different from that of Gupta’s model trained and tested by the Schones data (P = 0.912 
by Wilcoxon test; figure 2). This result indicates that the effect of specific training data to 
the performance of Gupta’s method is not so significant.  

 

Figure 2. Comparison of prediction ability 

for Gupta’s SVM by two different data 

Figure 3. Prediction accuracies of Gupta’s SVM trained by 

the data of various species 

 
Additionally, we studied whether Gupta’s model trained by a dataset of a certain 

organism was applicable to the prediction in other species. This test has two meanings: 
one is to assess its practical value when there is no training data available for the species 
that users want to analyze, while the other is to see if the sequence features used in the 
method are conserved across species. The SVM trained by the yeast dataset showed 
significantly greater performance in predicting itself than those trained by datasets from 
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other species (P < 4.19e-03 by Dunnett’s test; figure 3). The model trained by the 
medaka data was significantly better in predicting themselves, too (P < 3.23e-02). On the 
other hand, there were no significant differences among the five training datasets for the 
prediction of nematode and candida nucleosomes (P > 0.05). These results suggest that 
the sequence specificity for nucleosome positioning may be a little varied in medaka and 
budding yeast. 

3.2 General and Specific Sequence Dependencies in Nucleosome Positioning 

Figure 4: Comparative analyses of over-represented oligomers in nucleosomes. Significance level was set to 

0.05 (indicated by dashed lines). 

 
To further analyze the potential difference of DNA sequence dependency between 
species, we compared oligomers that are over-represented in nucleosomal DNAs 
between various pairs of species (Figure 4 and Supplementary Table 2). Clearly, the 
nucleosomal DNAs in medaka are quite different from others. Among the five over-
represented motifs in medaka, CA/TG and AC/GT are shared in all species (Bonferroni-
adjusted P < 0.05). The CA/TG step is known as the most flexible dinucleotide step [19], 
which is suitable for kinks of DNA to wind around a histone octamer [20]. AC/GT was 
also reported as a flexible step [19]. On the other hand, AGA/TCT is specific to only 
medaka, and there is no report about its association with nucleosome formation. 
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Except for medaka, a couple of additional general motifs were observed: C/G 
mononucleotide showed the lowest p-value in all tested oligomers. The over-
representation of single nucleotides is interpreted that the G+C content of DNA sequence 
influence the nucleosome positioning. Furthermore, WW dinucleotides (CC/GG, GC and 
CG) were also over-represented. In addition, several trinucleotides were also observed in 
the four species: ACC/GGT, AGC/GCT, CAC/GTG, CAG/CTG, GAC/GTC, GCA/TGC 
and GGA/TCC, which are the combinations of one A/T and two G/C steps, were 
observed. The repetitive occurrence of CAG/CTG is known to form a stable nucleosome 
structure [3]. Gupta et al. also pointed out the 3-bp interval of CG and GC in human 
nucleosomal DNA [10]. It seems to be interpreted that proper spacing of A/T and G/C is 
important for promoting nucleosome positioning. 

Figure 5: Comparative analyses of under-represented oligomers in nucleosomal DNA (over-represented in 

linker DNA). Significance level was set to 0.05 (indicated by dashed lines). 

 
We also examined under-represented oligomers in nucleosomal DNA, which are 

interpreted as effective for nucleosome inhibition. Similar with over-represented motifs, 
the medaka nucleosomal DNA showed a clear difference with the other species (Figure 5 
and Supplementary Table 3). GC-rich oligomers, such as CG/CG, CCG/CGG and 
CCGC/GCGG, were under-represented only in medaka. Although the nucleosome 
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inhibition was previously observed with the consecutive runs of CG /CG [3], it was not 
enriched in the linker regions of the four species. 

On the other hand, in our analysis, AT-rich oligomers were significantly responsible 
for the nucleosome inhibition, and each organism showed several specific under-
represented motifs. The sequences associated with poly(A)/poly(T), such as 
AAAA/TTTT and AAAAT/ATTTT, were commonly observed in human, nematode, 
candida and yeast. It has been reported that the poly(A)/poly(T) is often observed in non-
nucleosomal DNA of several organisms [2, 3] and that it can influence the disruption of 
nucleosomes by forming a specific DNA structure [21]. In addition, oligomers similar to 
the TATA box, such as TATA/TATA and TAATA/TATTA, were strongly frequent in 
the linker regions in human, medaka, nematode and yeast, but were not significant in 
candida (P > 0.05). The contribution of TATA box to nucleosome formation has been 
argued in several previous analyses. While Widlund et al. showed that TATA-containing 
sequences form stable nucleosomes by an in vitro assay [22], Ioshikhes et al. showed that 
nucleosomes in TATA-containing promoters are fuzzier than in TATA-less promoters [5].  

The results of over- and under-represented oligomers in nucleosomal DNA suggest 
that each organism has somewhat different sequence tendency for nucleosome formation 
and avoidance. Several reported motifs were not always significant in our test based on 
the in vivo data. It is likely that the rather varied performance of inter-species predictions 
is due to these different sequence features.  

Our approach has a limitation that the performance of each algorithm is evaluated 
assuming fixed nucleosome locations. It is known that some nucleosomes move in 
response to external stimuli. Since our evaluation dataset does not contain such 
information, we cannot evaluate whether the score produced by each algorithms reflects 
the stability of nucleosome positioning. In addition, repetitive elements were not 
evaluated in this study in which nucleosomal and linker DNA sequences overlapping 
repetitive elements were removed. However, several repetitive elements are strongly 
associated with nucleosome positioning  (Tanaka, Yamashita, and Nakai, submitted). 

4 Conclusions 

As far as we know, it is the first third-party assessment of publicly available tools for the 
prediction of nucleosome positioning. From the AUC criterion, we suggest that Gupta’s 
SVM with the RBF kernel is the best predictor. However, this method currently requires 
the training of a model with a number of nucleosomal and non-nucleosomal DNAs and 
deterioration of prediction accuracy when applying a SVM trained by the data of a 
different organism may occur. Therefore, for the prediction of a species’ data without 
appropriate samples, Segal’s method may be recommended because it does not require 
the training by users and shows relatively stable prediction accuracy in four species. 

We hope that our results will be useful not only for practical purposes but also for the 
understanding of how much the nucleosome positioning is dependent on the local 
sequence features and how much the sequence determinants are common between 
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species. Since many prediction tools are frequently updated or newly developed, the 
assessment should be updated periodically. 

Additional Data and URL 

The details of how to construct the genome-wide nucleosome maps are also described in 
the website (http://www.hgc.jp/~ytanaka/assess2009/index.html).  Our test dataset and 
supplementary tables are also available in this site. 
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