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We introduce a new data structure, a localized suffix array, based on which occurrence
information is dynamically represented as the combination of global positional infor-
mation and local lexicographic order information in text search applications. For the

search of a pair of words within a given distance, many candidate positions that share
a coarse-grained global position can be compactly represented in term of local lexico-
graphic orders as in the conventional suffix array, and they can be simultaneously exam-
ined for violation of the distance constraint at the coarse-grained resolution. Trade-off

between the positional and lexicographical information is progressively shifted towards
finer positional resolution, and the distance constraint is reexamined accordingly. Thus
the paired search can be efficiently performed even if there are a large number of occur-
rences for each word. The localized suffix array itself is in fact a reordering of bits inside

the conventional suffix array, and their memory requirements are essentially the same.
We demonstrate an application to genome mapping problems for paired-end short reads
generated by new-generation DNA sequencers. When paired reads are highly repetitive,

it is time-consuming to näıvely calculate, sort, and compare all of the coordinates. For a
human genome re-sequencing data of 36 base pairs, more than 10 times speedups over the
näıve method were observed in almost half of the cases where the sums of redundancies
(number of individual occurrences) of paired reads were greater than 2,000.

Keywords: suffix array; rank function; genome mapping; short reads; paired-end reads;
new-generation DNA sequencing.

1. Introduction

With the advent of new-generation DNA sequencers, the ongoing rapid improve-
ments in sequencing technologies continue to expand the frontiers of genomic sci-
ences such as personal genomics, metagenomics, and others [2, 9]. Their overwhelm-
ingly high sequencing throughputs and relatively short read lengths have posed big
challenging problems in bioinformatics [10]. In particular, genome mapping prob-
lems have been reconsidered in the light of the innovated context, and a number of
powerful methods have been developed so far. Among them, methods based on the
spaced seed and extension approach such as ELAND and MAQ have been developed
earlier and widely used [7]. More recently, methods based on the Burrow-Wheeler
transform (BWT) are attracting attention by their superior performance [3, 4, 6, 8].
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One of the latest major concerns in genome mapping for short reads is involved
in paired-end (PE) mapping. For the compensation of the disadvantage of short
read lengths, PE sequencing has been developed: a pair of short reads are obtained
by sequencing from both ends of a DNA fragment whose length is approximately
controlled. Therefore, they are expected to be found on the reference genome apart
from each other by a distance that corresponds to the fragment length. Given a pair
of short reads, the PE mapping problem is to find their positions on the genome
apart from each other within a given distance and in consistent orientation; in
contrast, given a single short read, the single-end (SE) mapping problem is to find
its positions on the genome. If the intra-pair distance or orientation is certainly
different from expected, it can be used as evidence for genomic structural variations
such as insertions, deletions, inversions and translocations.

A basic approach to PE mapping is to first find all of the possible mapping
positions of each read independently (SE mappings for each read), and then choose
combinations of them so that the intra-pair distance and orientation conditions are
satisfied. When BWT or a suffix array (SA) is being used, the SE mapping subprob-
lems can be solved efficiently and the intermediate results can be concisely expressed
in terms of lexicographic orders (indices) no matter how many solutions are found.
However, in order to choose the proper combinations among them, it is necessary to
convert them into genomic coordinates (positions) and to sort and compare them.
It can be time-consuming if the reads are highly repetitive (frequently occurring).
In general, when BWT or SA is being used, it is difficult to restrict the search in a
particular region of interest since the occurrence information is managed in terms
of indices rather than positions.

In this paper, we propose a new data structure, a localized suffix array (LSA),
which is a modification of the conventional SA, and present a new search method
that can handle repetitive occurrences efficiently as the conventional SA does, and at
the same time, can be used in restricted search in particular regions of interest. We
demonstrate its applications to PE mapping problems for short reads and discuss
their performances using real biological data.

2. Localized Suffix Array (LSA)

We discuss the subjects mainly in terms of PE genome mapping problems in order
to present our idea concretely. However, most of the discussion in this section can be
generally applicable to other text search problems in different fields. We begin with
presenting a basic idea of localizing lexicographic order information, and consider
refining it into a feasible method. For ease of understanding, we first explain how the
localization should work using a tiny text string example. Then a formal description
of the algorithm and data structure follows.
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2.1. Basic idea

One of the drawbacks in text searching methods based on suffix array techniques
is that it is not easy to consider constraints on the occurrence positions during
the searching process. For example, consider the PE mapping problem: locating
a pair of short reads such that their positions are apart from each other within
a given distance. For simplicity, only exact matching is considered here. One can
efficiently locate all of the occurrences of each read independently using suffix array
techniques. In particular, the occurrences of a read can be concisely represented as
a single interval of suffix indices no matter how repetitive it is. However, in order to
find a combination of the occurrences of the paired reads within a given distance,
one should calculate, sort, and compare all of the occurrence positions. It would be
time-consuming if the reads are highly repetitive.

One of the remedies would be to employ local suffix arrays that are restricted
to subregions. One might recursively divide up the whole genome region and build
a suffix array for each subregion as shown in Figure 1. Positional constraints would
be considered by restricting the searches to some subregions and locally repetitive
elements would be treated efficiently on the corresponding suffix arrays. However,
this approach does not seem to work efficiently at all since there is extremely high
redundancy among the local suffix arrays for subregions at different levels.

Since only short prefixes of suffixes are relevant in search applications, a subarray
of the suffix array (referred to as suffix subarray) that corresponds to a subregion
can be used in place of a local suffix array restricted to the subregion (Figure 2).
However, note that the orders of indices in them are not necessarily consistent with
each other because the corresponding suffixes have different tail ends. Since the
values in the suffix array represent positions, binary representations of values in the

Fig. 1. Basic idea of localizing lexicographic order information.

Fig. 2. (a) list of suffixes corresponding to the suffix array for a whole region, (b) lists of suffixes
corresponding to the local suffix arrays for half subregions, (c) lists of suffixes corresponding to the
suffix subarrays for half subregions. Suffixes in the second half subregions are shaded dark gray.
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suffix subarray share common higher bits that reflect the position and width of the
subregion, namely, their global positional information. Meanwhile, they have dis-
tinct lower bits, which convey lexicographic order information within the subregion
(Figure 3(a)). Making the subregion narrower increases the width of the common
higher bit fields representing the positional information, and decreases the width of
distinct lower bit fields representing the order information.

The process of narrowing the subregion is referred to as localization. PE map-
ping based on a recursive localization (RL) method is schematically illustrated in
Figure 3(b). Initially, occurrences of each read are independently given in terms of
lexicographic order in the suffix array, and there are no positional information at all.
By the recursive localization of the occurrences, one can get progressively detailed
positional information. Along the way, positional constraint (intra-pair distance)
can be checked up to the positional resolution at the time. As a special case, when
one of the reads is uniquely located by itself, after immediately calculating its posi-
tion, the occurrences of the other read in the vicinity can be located in progressive
resolution by the recursive localization. Finally, the positional information of the
mapping results satisfying the constraint are precisely determined.

2.2. Procedural introduction of recursive localization (RL) and

LSA

In this subsection, we concretely explain how to realize the recursive localization
(RL) using a tiny text example, and also make some observations that will lead to
an efficient algorithm presented in the subsequent subsection. Remember that the
binary representation of an occurrence is initially lexicographic order information
alone. In each step of RL, a single bit of positional information will be gained in
exchange for loss of a single bit of lexicographic order information.

Let us consider a tiny example text data: S = “abracad”. The length of S

is seven and the entire region over S is [0, 7]. Any occurrence of a substring of S

Fig. 3. Paired-end (PE) mapping by the recursive localization (RL) method.
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can be specified by an index in the suffix array (Figure 4(a)). The values in the
suffix array, (7, 0, 3, 5, 1, 4, 6, 2), are sorted according to the lexicographic order of
the corresponding suffixes, and all of the bits in the binary expression convey the
lexicographic order information (Figure 4(b)). At the first step of RL, by sorting the
indexed values with respect to the most significant bit, we get two suffix subarrays,
(0, 3, 1, 2) and (7, 5, 4, 6), which correspond to two subregions [0, 3] and [4, 7], respec-
tively. The binary representations of values in these suffix subarray have three bits
PLL, where the most significant bit P indicates the global positional information
of the subregions and the lower bits LL convey the local lexicographic order infor-
mation within the subregion (Figure 4(c)). At the second step of RL, by sorting the
indexed values again with respect to the secondly significant bit, we get four suffix
subarrays: (0, 1), (3, 2), (5, 4) and (7, 6), which correspond to four (sub)subregions:
[0, 1], [2, 3], [4, 5] and [6, 7], respectively. The binary representations of values in
these suffix subarray have three bits PPL, where the higher bits PP indicate the
global positional information of the (sub)subregions and the lower bit L conveys
the local lexicographic order information within the (sub)subregions (Figure 4(d)).
At the final step of RL, by further sorting the indexed values again according to
the last bit, we get eight suffix subarrays: (0), (1), . . . , (7), which are completely
sorted according to the positions since we have so far sorted them according to all
of the three bits (Figure 4(e)). The final values in these suffix subarrays consist
exclusively of positional bits PPP . They correspond to eight subregions of length
one: [0, 0], [1, 1], . . . , [7, 7], respectively.

In the intermediate steps of RL, occurrences of locally repetitive substrings re-
stricted to particular subregions are concisely represented by the mixed bit repre-
sentations: the higher bits are used to specify the subregion and the lower bits are
used to specify the local lexicographic order within the subregion. The latter have
similar utility in the subregion as the conventional suffix array has in the whole
region.

Note that the indexed values are sorted in each step with respect to the ref-

Fig. 4. An example of recursive localization (RL). The reference bits, highlighted in boldface type
in (b), (c) and (d), constitute the localized suffix array (LSA) in (f).
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erence bits in the corresponding column, which are shown in bold face fonts in
Figure 4(b)(c)(d). Namely, these reference bits in columns constitute all the infor-
mation necessary to carry out the above procedure. We define the localized suffix
array (LSA) as these reference bits in columns lumped together (Figure 4(f)). Each
column of LSA is an rearrangement of the bits in the corresponding column of the
binary representation of the original suffix array. Hence the LSA and the conven-
tional suffix array have the same number of bits. Moreover they have the equivalent
information because the conventional suffix array can be restored conversely from
LSA by rolling back the above RL procedures starting from the completely sorted
position list. Finally, note that the internal orders in a suffix subarray are inherited
from its parent subarray.

2.3. Algorithms for LSA construction and RL of index intervals

Motivated by the previous observations, we can now formalize the algorithm for RL
and data structure of LSA. Let S be a text data, $ be a termination symbol that
does not appear in S, and B be the suffix array of S$. For simplicity, we assume that
the length of S$ is a power of two, `(S$) = 2w, which is not an essential restriction.
Then each value in B is uniquely represented by a w-bit binary string. Let Q be a
query text string that appears at least once in the text data S. Each occurrence of Q

in S is represented by an index of B, and the set of all occurrences (exact matches)
of Q in S is represented by a half-open index interval R = [s, t[ (greater than or
equal to s and less than t) of the suffix array B and the number of occurrences is
given by t − s. Here only exact matches are being considered for simplicity. In the
case of approximate matches, multiple intervals should be considered instead, and
the following discussion could be modified accordingly in a straightforward way.

Fig. 5. Recursive localization (RL) of suffix array and index interval. B is a suffix array and R
is an index interval representing the occurrences of a query string. Suffix subarrays and localized
intervals are denoted by Bα and Rα, respectively, with a binary string α.
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Suffix subarrays, denoted by Bα, are recursively defined as follows. Figure 5
illustrates the process in parallel with Figure 4. Generally, α denotes a binary string
over 0 and 1 of length (denoted by `(α)) up to w. α may represent an empty string
ε. We define Bε = B and that Bα0 and Bα1 be the subarray of Bα whose (d + 1)-
th significant bit, referred to as the reference bit, is 0 or 1, respectively, where
d = `(α) < w. Consequently, Bα is the subarray of B with the highest d bits equal
to α where `(α) = d for 0 ≤ d ≤ w. Let Lα denote the concatenation of the reference
bits in Bα. The localized suffix array (LSA) is constituted from these Lα altogether
for 0 ≤ `(α) < w. It contains all of the required information as noted below. A
pseudo-code of construction algorithm is given in Figure 6.

Localized intervals, denoted by Rα = [sα, tα[, are recursively defined as follows.
Rε = R, namely, sε = s and tε = t. For α with `(α) < w, Rα0 = [sα0, tα0[ and
Rα1 = [sα1, tα1[ are given by

sα0 = rank(Lα, sα, 0), tα0 = rank(Lα, tα, 0),

sα1 = rank(Lα, sα, 1), tα1 = rank(Lα, tα, 1),

where rank() denotes the rank function. In general, given a binary string L over 0
and 1, rank(L, s, 0) is the number of occurrences of 0 in the first s bits of L; likewise,
rank(L, t, 1) is the number of occurrences of 1 in the first t bits of L. Fast algorithms
for computing rank functions with a little space overheads for precomputed data,
for example with less than 3% extra overheads, are known [1, 3]. The validity of
this definition is guaranteed by the above-mentioned inheritance property of the
internal orders in a suffix subarray. Finally with `(α) = w, the localized intervals
acquire precise positions. Note that all the information that is required to compute
(Rα)`(α)≤w, the recursive localization (RL) of R, is given by LSA.

3. Application to Paired-End (PE) Mapping Problems

Given a pair of short reads, the paired-end (PE) mapping problem is to find their
locations on the reference genome that are apart from each other within a given
distance and in consistent orientation. It can be solved by first solving single-ended
(SE) mapping problems for each read independently and then searching for com-
bination of the occurrences of the paired reads that satisfy the intra-pair distance
and orientation conditions. In the latter stage, the RL method developed in the
preceding section can be applied: the locations of localized intervals were coarsely
determined in progressive accuracy, which enables checking the intra-pair conditions
and filtering out illegal candidates in bulk (Figures 1, 3). We explain details of the
implementation of our experimental program and show the results.

3.1. Single-end (SE) mapping method

In solving SE mapping problem, a few mismatches at the nucleotide level are usually
allowed in consideration of possible polymorphism or sequencing errors. We devel-
oped a fast SE mapping program using BWT that allowed at most one mismatch
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(substitution, insertion or deletion of a single base) per read [3]. Descending prior-
ities were given to exact matches, substitutions and indels (insertions or deletions)
in this order. Occurrences with higher priority were searched first, and if they were
found, other occurrences with lower priorities were not searched. The SE mapping
results were represented as a set of index intervals of the suffix array of the reference
genome, but their genomic positions were not calculated.

3.2. Paired-end (PE) search methods

A set of intervals of the suffix array, given by the SE mapping program, were re-
cursively localized, and they were repeatedly tested and filtered in terms of the
intra-pair conditions. The minimum and maximum intra-pair distances were speci-
fied in advance, and the pairs of positions with minimum intra-pair distance within
the specified range were output for each pair of reads (as an initial attempt). When
no legal positions were found, we returned to the SE mapping to collect all occur-
rences down to the lowest priority in order to get an extended set of intervals, and

1: build_LSA(int length, int SA[length], bool LSA[height][length]) {
2: int val[length], buffer[2][length / 2];
3: for (int j = 0; j < length; ++j)
4: val[j] = SA[j];
5: for (int ht = height; ht > 0; --ht) {
6: int block_len = 1 << ht, num_block = ceil(length / block_len);
7: for (int bl = 0; bl < num_block; ++bl) {
8: int *pt[2] = {buffer[0], buffer[1]};
9: for (int i = 0; i < block_len; ++i) {
10: int j = bl * block_len + i;
11: if (j >= length)
12: break;
13: bool t = val[j] & (block_len / 2);
14: LSA[ht - 1][j] = t;
15: *pt[t]++ = val[j];
16: }
17: int j = bl * block_len;
18: for (int t = 0; t < 2; ++t)
19: for (int *q = buffer[t]; q < pt[t]; ++q)
20: val[j++] = *q;
21: }
22: }
23: }

Fig. 6. Pseudo-code for building localized suffix array (LSA). length and SA are input arguments
and LSA is an output argument of the function. SA and val are one-dimensional arrays and LSA

and buffer are two-dimensional arrays of designated sizes. << and & denote a leftward bit shift
operation and a bitwise AND operation, respectively. height is equal to dlog(length)e. The suffix
subarrays, implicitly referred to as blocks, are temporally stored in consecutive subarrays of val.
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reattempted the PE searches.
For comparison, we also implemented the näıve approach: all of the positions of

occurrences given by SE mapping were calculated, sorted and compared, and pairs
of positions satisfying the intra-pair conditions were chosen among them.

3.3. Experimental results

The performance of the experimental program was evaluated using real biological
data from NCBI short read archive, SRA00271, human genome resequencing data
of an African individual (NA18507) [11]. The read length was 36 bp and the median
insert size was about 200 bp. In PE mapping, the minimum and maximum intra-pair
distances were set to 0 bp and 1024 bp, respectively.

We used the human genome reference sequence data hg18 from the UCSC
Genome Bioinformatics site [12]. The suffix arrays and BWTs of the human genome
sequence on both strands were calculated using the algorithm of qsufsort [5]. It
took approximately 46 minutes each on a 3.0 GHz Intel Xeon Linux PC using
approximately 30 GB of memory. Then LSA on both strands were calculated in
approximately 21 minutes each. These preprocessings were done only once by a for-
matting program and the results were stored in a hard drive as binary data. They
were reloaded again into main memory and reused by the mapping program. The
memory requirement for LSA was about 12GB for each strand, and the mapping
program used about 29GB memory in total.

We first examined the distributions of mapping redundancies. The SE mapping
redundancy was defined as the number of solutions of the SE mapping problems for
each read. It was thought to have direct influence on the computational cost for
solving the PE mapping problem especially when the näıve method was employed.
The PE mapping redundancy was defined as the number of solutions of the PE
mapping problem. It was expected to be reduced when the intra-pair constraints
were effective. When a read or a read pair failed to find any mapping positions, its

Fig. 7. Distribution of SE and PE mapping redundancy for a million pairs of reads.
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redundancy was set to zero. Figure 7 shows an example of the distributions of the
SE and PE mapping redundancies for a million pairs of reads. The reduction of the
PE mapping redundancy compared to the SE mapping redundancy was done by
the PE mapping program. The success rate of PE mapping was about 77.0%.

We also examined how the RL method reduced the computation costs when
the reads are highly repetitive. As a simple measure of repetitiveness, we adopted
the sum of the SE mapping redundancy of paired reads (abbreviated as SSR).
Figure 8 shows a joint distribution of SSR (in abscissa) and computation time in
microseconds (in ordinate) by the näıve (’×’) and RL (’+’) methods in a log-log plot.
Each point corresponds to a pair of read, and the results of 10,000 pairs of reads
are shown. The computation time is the sum of those for SE and PE mapping.
When read pairs were highly repetitive, the näıve method always required long
computation time as expected, and great reduction of computation time by the RL
method was observed for a large majority of them. In fact, in an extended dataset

Fig. 8. Joint distribution of SSR (in abscissa) and computation time in microseconds (in ordinate)

by the näıve (’×’) and RL (’+’) methods in a log-log plot. Each point corresponds to a pair of
read, and the results of 10,000 pairs of reads are shown. SSR is a measure of repetitiveness of the
reads. The computation time is the sum of those for SE and PE mapping. When read pairs were
highly repetitive (SSR were large), the näıve method always required long computation time as

expected, and great reduction of computation time by the RL method was observed for a large
majority of them.
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of 2 million pairs, more than 10 times speedup were observed in approximately 47%
of the cases where SSR is greater than 2,000. In contrast, when the read pairs were
hardly repetitive, the näıve method outperformed the RL method because of the
light workload and its algorithmic simplicity. In addition, there are minor occasions
where the read pairs were highly repetitive and yet the näıve approach outperformed
the RL method. We will discuss this issue in the following section.

4. Additional Results and Discussions

In this section, we discuss some practical issues in efficiently utilizing the RL
method. Clearly, when the paired reads are hardly repetitive and the mapping
workload is light, the näıve method is superior to the RL method because of its
simplicity. Hence, in a practical point of view, a suitable method should be selected
according to the repetitiveness of paired reads. As discussed earlier, SSR can be used
a simple measure of repetitiveness. We refer to switching the above two methods
according to this measure as mixed method. An optimal threshold value of SSR was
around 500 for the data of 2 million pairs of reads of length 36 bp that was used in
the preceding section. Overall computation time by the näıve and RL method was
4,635 sec and 3,189 sec (1.5× speedup), respectively, and it was reduced to 2,554
sec (1.8× speedup) by the mixed method.

As mentioned earlier, the RL method was occasionally outperformed by the
näıve method even in the case of highly repetitive reads. These were incurred by
the proliferation of localized intervals in the RL method. Although the number of
localized intervals might be doubled in each localization step, the intra-pair con-
straint pruned isolated intervals and the proliferation was prevented in most cases.
However, when paired reads were not only highly repetitive individually but also
highly repetitive as a pair, the proliferation did occur. When a proliferation was ob-
served, a practical remedy would be to give up mapping the pair at the cost of less
sensitivity. When the number of localized intervals are limited to 100, the mapping
time for the same data was reduced to 1,595 sec (2.9× speedup) while the number
of successfully mapped pairs was not reduced at all.

When the initial attempt of PE mapping was failed, further acceleration of com-
putation at the cost of less sensitivity was possible by giving up the second attempt
of PE mapping without returning to the SE mapping. Then the mapping time was
further reduced to 1,013 sec (4.6× speedup) and the success rate of mapping was
reduced by 0.25%.

Read length is one of the major factors that affects the performance of PE
mapping since shorter reads occur more frequently on the genome. We examined
the performances when the read length is reduced to 24 bp using first 24 bp of reads
from the same data. Overall computation time by the näıve and RL method was
28,011 sec and 8,997 sec (3.1× speedup), respectively, and it was reduced to 6,386
sec (4.4× speedup) by the mixed method. Thus the RL method seemed to be more
advantageous when the read length was shorter.
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There are some applications where PE mapping with shorter read lengths should
be considered, such as spliced mapping problems for transcripts: a read should be
mapped on the genome possibly after split at an unknown exon junction. This
problem can be solved by first solving the PE mapping problems for possible splits
and then checking the consensus of the genomic sequences around the mapped
spliced positions. One of the split reads can be very short since splitting may occur
at any position of the transcript read. Thus the RL method is expected to be
advantageous.

5. Conclusions

We proposed a new data structure, a localized suffix array that is a modification of
the conventional suffix array, and presented a new search method based on recur-
sive localization of index intervals, which is reduced to computing rank functions.
It enables local searches in regions of interest, and at the same time, efficiently
treats highly repetitive occurrences as the conventional suffix array does. It was ap-
plied to genome mapping problems for paired-end short reads and its accelerating
performance was demonstrated on real biological data. Finally, we pointed out its
potentially advantageous applications.
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