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We have recently proposed novel kernel functions, called base-pairing profile local align-

ment (BPLA) kernels for discrimination and detection of functional RNA sequences
using SVMs. We employ STRAL’s scoring function which takes into account sequence
similarities as well as upstream and downstream base-pairing probabilities, which en-
ables us to model secondary structures of RNA sequences. In this paper, we develop a

method for optimizing hyperparameters of BPLA kernels with respect to discrimination
accuracy using a gradient-based optimization technique. Our experiments show that the
proposed method can find a nearly optimal set of parameters much faster than the grid
search on all parameter combinations.

Keywords: support vector machines; kernel functions; gradient decent; non-coding
RNAs.

1. Introduction

Recent research has discovered crucial roles of non-coding RNAs (ncRNAs) in cells,
including post-transcriptional gene regulation, maturation of mRNAs, rRNAs and
tRNAs. Most functional ncRNAs form secondary structures with hydrogen bonds
such as Watson-Crick base-pairs (A-U and G-C) and Wobble base-pairs (G-U). It is
well-known that functions of ncRNAs are deeply related to their secondary struc-
tures rather than primary sequences. For example, transfer RNAs registered in the
Rfam database [?] have only 44 % average sequence identity, whereas they are
folded into conserved clover leaf secondary structures. Therefore, ncRNAs are mod-
eled by means of their secondary structures for computational ncRNA analysis. One
of such models is stochastic context-free grammars (SCFGs), which can represent
RNA secondary structures without pseudoknots [?, ?]. These grammatical methods
have succeeded in modeling typical secondary structures of RNAs, and are com-
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monly used for structural alignment of RNA sequences. However, such stochastic
models are not capable of discriminating the member sequences of RNA families
from nonmembers with sufficiently high accuracy to detect non-coding RNA regions
in genome sequences.

On the other hand, a compelling attraction of support vector machines (SVMs)
and other kernel methods has been increasing in many research fields, including
bioinformatics [?], because of their robustness. For example, Saigo et al. have pro-
posed local alignment kernels for amino acid sequences [?, ?], and their kernels
with SVMs have outperformed other state-of-the-art methods in benchmarks for
remote homology detection of amino acid sequences. Therefore, we have been con-
sidering using kernel methods, including SVMs, for the analysis of functional ncR-
NAs [?, ?, ?].

We have recently proposed novel kernel functions, called base-pairing profile local
alignment (BPLA) kernels for discrimination and detection of functional RNA se-
quences using SVMs [?]. We extend the concept of local alignment kernels in such a
way that it can handle RNA sequences using the scoring function in STRAL, which
is a practical aligner for non-coding RNAs [?]. The local alignment kernels measure
the similarity between two sequences by summing the scores over all possible local
alignments with gaps, whereas STRAL’s scoring function takes into account se-
quence similarities as well as upstream and downstream base-pairing probabilities,
which enables us to model secondary structures of RNA sequences. Our experiments
have proved powerful discrimination ability of BPLA kernels for functional RNA
families. Furthermore, we have demonstrated the applicability of our kernels to
the problem of genome-wide search of snoRNA families in the C. elegans genome,
and have confirmed that the expression is valid in 14 out of 48 of our predicted
candidates by using qRT-PCR (p-value = 2.8 × 10−32).

Our previous experiments showed that parameters for the BPLA kernels are
quite different depending on what kind of data (flanking regions or not) and what
family of sequences should be trained. Our previous study employed a brute force
approach in which optimal parameters for each case were calibrated by the grid
search on all parameter combinations from selected search space for each parameter.
It is easily predicted that this approach should require exponential time in the
number of parameters to be optimized.

Therefore, we propose a gradient-based parameter optimization for BPLA ker-
nels. This work is based on Keerthi et al. [?], in which gradients of accuracy measures
(e.g. AUC) with respect to hyperparameters of kernel functions are calculated, then
these hyperparameters are optimized with a numerical optimization algorithm such
as the quasi-Newton’s method. We develop a dynamic programming algorithm for
calculating the gradients of BPLA kernels with respect to their parameters to be op-
timized by the Keerthi’s method. Our experiments show that the proposed method
can find a nearly optimal set of parameters much faster than the grid search on all
parameter combinations.

This paper is organized as follows: in section 2, we first introduce BPLA kernels
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for functional RNA analysis and dynamic programming algorithms for calculating
BPLA kernels and their gradient with respect to their hyperparameters. Then, we
briefly describe the Keerthi’s gradient-based optimization method. In section 3,
computational experiments are shown to confirm the efficiency of our method, and
we discuss our framework in section 4. Finally, we conclude this paper in section 5.

2. Methods

2.1. Base-pairing profile local alignment kernels

Local alignment kernels can calculate the similarity between a pair of sequences
by taking into account only sequence homology [?]. However, since it is well-known
that ncRNAs form secondary structures which are related to their functions, it is
necessary to consider the secondary structures of ncRNAs in order to compare two
RNA sequences. To do this, we have proposed stem kernels [?] and their approxi-
mation using directed acyclic graphs (DAGs) of ncRNAs [?]. The stem kernels can
consider RNA secondary structures strictly, but require huge computational time for
practical problems. Differing from them, BPLA kernels employ a kind of summary
information of secondary structures, called base-pairing profiles, as well as STRAL,
which is a practical aligner for non-coding RNAs [?].

For each sequence, we first calculate a base-pairing probability matrix using
the McCaskill algorithm [?] or the inside-outside algorithm [?]. The base-pairing
probability matrix for a sequence x consists of the base-pairing probabilities Pij

that the i-th and the j-th nucleotides of x form a base pair, which is defined as:

Pij = E[Iij |x] =
∑

y∈Y(x)

p(y|x)Iij(y), (1)

where Y(x) is an ensemble of all possible secondary structures of x, p(y|x) is the
posterior probability of a secondary structure y given x, and Iij(y) is an indicator
function, which equals 1 if the i-th and the j-th nucleotides form a base-pair in y and
0 otherwise. In this study, we employ the Vienna RNA package [?] for computing
the expected counts (1) using the McCaskill algorithm.

Subsequently, for each position i of x, the base-pairing probabilities are sum-
marized into tree kinds of sums: the probability P left

i =
∑

j>i Pij that a pair is
formed with one of the downstream nucleotides, the probability P right

i =
∑

j<i Pji

that a pair is formed with one of the upstream nucleotides, and the probability
Punpair

i = 1− (P left
i + P right

i ) that the nucleotide is unpaired. A probability distri-
bution consisting of these three probabilities is called a base-pairing profile [?].

In accordance with STRAL [?], we define the match score between two nu-
cleotides xi and yj using base-pairing profiles as follows:

S(xi, yj) =α(Sstruct) + Sseq

=α

(√
P left

xi P left
yj +

√
P right

xi P right
yj

)
+

√
Punpair

xi Punpair
yj S′(xi, yj), (2)
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Initialization:
for i ∈ {0, . . . , |x|} and j ∈ {0, . . . , |y|} do

M(i, 0) = IX(i, 0) = IY (i, 0) = RX(i, 0) = RY (i, 0) = 0
M(0, j) = IX(0, j) = IY (0, j) = RX(0, j) = RY (0, j) = 0

end for
Iteration:
for i ∈ {1, . . . , |x|} and j ∈ {1, . . . , |y|} do

M(i, j) = eβS(xi,yj)(1 + IX(i − 1, j − 1) + IY (i − 1, j − 1) + M(i − 1, j − 1))
IX(i, j) = eβgM(i − 1, j) + eβeIX(i − 1, j)
IY (i, j) = eβg(M(i, j − 1) + IX(i, j − 1)) + eβeIY (i, j − 1)
RX(i, j) = M(i − 1, j) + RX(i − 1, j)
RY (i, j) = M(i, j − 1) + RX(i, j − 1) + RY (i, j − 1)

end for
Termination:
K(x, y) = 1 + RX(|x|, |y|) + RY (|x|, |y|) + M(|x|, |y|)

Fig. 1. The dynamic programming of the BPLA kernel.

where α is a weight parameter for structural information, and S′ is a substitution
scoring function between two nucleotides. In this study, we use a modified RIBO-
SUM 85-60 [?] as the substitution scoring matrix, in which its smallest eigenvalue is
subtracted from each of its diagonal elements in order to make it positive semidef-
inite. Then, we employ equation (2) as the match scores for the local alignment
kernels between two sequences x and y, which is defined as follows:

K(x, y) =
∑

π∈Π(x,y)

expβs(x, y, π), (3)

where β ≥ 0 is a concentration parameter, Π(x, y) is a set of all possible local
alignments of x and y, and s(x, y, π) is a score of alignment π defined by:

s(x, y, π) =
∑
a,b

na,b(x, y, π) · S(a, b) − ng(x, y, π) · g − ne(x, y, π) · e, (4)

where na,b(x, y, π) is the number of times that nucleotides a is aligned with nu-
cleotides b in π, ng(x, y, π) and ne(x, y, π) are the numbers of gap opens and gap
extensions, respectively, and g and e are penalties for gap opens and gap exten-
sions, respectively. We call equation (3) with the match scoring function (2) the
base-pairing profile local alignment (BPLA) kernel. Equation (3) can be computed
by the dynamic programming technique shown as Figure 1.

The hyperparameter optimization algorithm, described in Section 2.2, employs
the gradient of K(x, y) with respect to parameters α, β, g and e, which can also be
computed by the dynamic programming. Figure 2 shows the dynamic programming
of calculating the derivative with respect to α. The derivatives with respect to the
other parameters can be computed as well as α.

In order to avoid length bias, we usually normalize kernel values. Therefore, we
would like to optimize hyperparameters with respect to the normalized kernels Kn

by using its derivative K ′
n:
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Initialization:
for i ∈ {0, . . . , |x|} and j ∈ {0, . . . , |y|} do

∂
∂αM(i, 0) = ∂

∂αIX(i, 0) = ∂
∂αIY (i, 0) = ∂

∂αRX(i, 0) = ∂
∂αRY (i, 0) = 0

∂
∂αM(0, j) = ∂

∂αIX(0, j) = ∂
∂αIY (0, j) = ∂

∂αRX(0, j) = ∂
∂αRY (0, j) = 0

end for
Iteration:
for i ∈ {1, . . . , |x|} and j ∈ {1, . . . , |y|} do

∂
∂αM(i, j) = βM(i, j)

„

q

P left
xi P left

yj +
q

P right
xi P right

yj

«

+eβS(xi,yj)( ∂
∂αIX(i − 1, j − 1) + ∂

∂αIY (i − 1, j − 1) + ∂
∂αM(i − 1, j − 1))

∂
∂αIX(i, j) = eβg ∂

∂αM(i − 1, j) + eβe ∂
∂αIX(i − 1, j)

∂
∂αIY (i, j) = eβg( ∂

∂αM(i, j − 1) ∂
∂αIX(i, j − 1)) + eβe ∂

∂αIY (i, j − 1)
∂

∂αRX(i, j) = ∂
∂αM(i − 1, j) + ∂

∂αRX(i − 1, j)
∂

∂αRY (i, j) = ∂
∂αM(i, j − 1) + ∂

∂αRX(i, j − 1) + ∂
∂αRY (i, j − 1)

end for
Termination:
∂

∂αK(x, y) = ∂
∂αRX(|x|, |y|) + ∂

∂αRY (|x|, |y|) + ∂
∂αM(|x|, |y|)

Fig. 2. The dynamic programming of the derivative of the BPLA kernel with respect to α.

Kn(x, y) =
K(x, y)√

K(x, x)K(y, y)

K ′
n(x, y) =

K ′(x, y)√
K(x, x)K(y, y)

− Kn(x, y)
2

(
K ′(x, x)
K(x, x)

+
K ′(y, y)
K(y, y)

)
.

2.2. Gradient-based optimization for SVMs

Tuning hyperparameters of kernel functions is known as an important task to
achieve enough accuracy in practical problems. Although brute force approaches
like the grid search are usually employed for such tasks, huge computational time
will obviously be required if the search space of hyperparameters is large. Keerthi
et al. have proposed a more efficient method which optimizes hyperparameters via
the gradient-based optimization [?].

We assume that n training data {(xi, yi)}n
i=0 (yi ∈ {−1, +1}) are given. In SVM

training, we optimize the parameters w and b which satisfy the following condition:

min
w,b

1
2
||w||2 + C

∑
i

l(oi, yi),

where l is a loss function such as the hinge-loss l(oi, yi) = max{0, 1 − yioi}, C is
a weight for the loss function, and oi is the output from the SVM for the training
data:

oi = w · φ(xi) − b =
∑

j

αjyjK(xi, xj) − b.
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Here, K(xi, xj) = φ(xi) ·φ(xj) is called a kernel function which can implicitly define
a high-dimensional mapping φ. The terms αjs constitute a dual representation for
w. We can obtain a linear system from the Karush-Kuhn-Tucker (KKT) condition:

P

(
α

b

)
= q. (5)

The training data and their coefficients α are divided into three parts: a part I0 for
αi = 0, a part Iu for 0 < αi < C, and a part Ic for αi = C. The linear system (5)
can be rewritten as follows:

α0 = 0, αc = Cec,

(
Ωuu −yu

−yT
u 0

)(
αu

b

)
=

(
eu − Ωucαc

yT
c αc

)
,

where Ωij = yiyjKij and eu is a unit vector. These α and b can be computed by
solving quadratic programming.

For given validation data {(x̄l, ȳl)}, we can calculate:

ōl =
∑

i

αiyiK(x̄l, xi) − b,

and can rewrite it with a matrix form:

ōl = ψT
l β,

where β is a vector containing α and b, and ψl is a vector containing yiKli, i =
1, . . . , n and −1 as the last element (corresponding to b).

Our objective is to maximize f (which is a kind of accuracy measures such as
specificity, sensitivity, F-value, or AUC) with respect to hyperparameters θ of a
given kernel function K. Here, ḟ denotes a derivative of f with respect to θ, that
is, ḟ = ∂f

∂θ , which can be computed as:

ḟ =
∑

l

δl ˙̄ol =
∑

l

δl

(
ψT

l P−1
(
q̇ − Ṗ β

)
+ ψ̇l

T
β
)

= dT
(
q̇ − Ṗ β

)
+

(∑
l

δlψ̇l

)T

β,

(6)
where d is the solution of

PT d =

(∑
l

δlψl

)
, (7)

and

δl =
∂f

∂ōl
. (8)

The steps for calculating the derivative ḟ is as follows. First, compute δl from
(8). Then, solve (7) for d. Equation (7) can efficiently be solved by the conjugate
gradient method. Then, compute ḟ for each θ from (6). After f and its gradients
ḟ are computed, we can apply the gradient-based optimization by the L-BFGS [?]
(or the L-BFGS-B [?] with box-constraints).



September 4, 2009 12:3 WSPC - Proceedings Trim Size: 9.75in x 6.5in 23-Sato

BPLA Kernels 7

We optimize the hyperparameters of BPLA kernels by means of AUC, that is,
f = auc defined as:

auc =
1

n+n−

∑
i:ȳi=+1

∑
j:ȳj=−1

sign(ōi − ōj), (9)

where n+ and n− are the numbers of the positive and negative examples in the
validation dataset, respectively. The step function sign(x) is approximated by using
the sigmoidal function s(x) = 1

1+exp(−σx) to make (9) differentiable.

3. Results

In order to illustrate the efficiency of our gradient-based optimization, we compared
the proposed method with the brute-force grid search. In each experiment, we first
calculated AUC for all the parameter combinations in the predefined search space,
and then performed our optimization procedure with the corresponding box con-
straints to evaluate whether it could approach the AUC value at the optimal grid
point. We used the same data set as in our previous paper [?], which includes five
ncRNA families taken from the Rfam database [?]. For each family, 100 sequences
were chosen as positive samples in such a way that the pairwise identity is not above
80% for any pair of sequences, and as negative samples, 100 randomly shuffled se-
quences with the same dinucleotide composition as the positives were generated.
AUC was calculated using four-fold cross-validation, and its gradient was computed
by summing over the four data partitions.

In our first experiment, we attempted to simultaneously optimize all the four
parameters α, β, g, and e in BPLA kernels, as well as C in the loss functions
of SVMs. To do this, we defined the search space with the five-dimensional box
constraints: 0 < α ≤ 20, 0 < β ≤ 0.2, 0 < g ≤ 30, 0 < e ≤ 1, and 0 < C ≤
40. Subsequently, we carried out the grid search in which we tried six values for
each parameter at even intervals, i.e. α ∈ {1 × 10−9, 4, 8, 12, 16, 20}, β ∈ {1 ×
10−9, 0.04, 0.08, 0.12, 0.16, 0.20}, and similarly for the others. Then, we performed
the gradient-based optimization. Since the proposed method might fall into one of
local maxima, resulting AUC depends on initial values of the parameters. Therefore,
we executed the optimization procedure from various start points. These start points
were chosen by combining the first or third quantile of each parameter, i.e. α ∈
{5, 15}, β ∈ {0.05, 0.15}, and similarly for the others, and we evaluated the mean
AUC value of the 25 trials.

Table 1 presents the experimental results. Although the grid search attained
the best discrimination for all the ncRNA families tested, it took the huge com-
putational time because of brute-force calculation for 7776 (= 65) combinations
of the parameters. Note that even the relatively coarse grid with only six values
for one dimension required such massive computation. This clearly shows that the
grid search is not a practical way to adapt the parameters of BPLA kernels against
various kinds of data set. On the other hand, our gradient-based optimization suc-
cessfully found the nearly optimal set of the parameters much faster than the grid
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Table 1. Comparison between the gradient-based optimization and the grid
search.

gradient-based optimization grid search
Family N AUC time (h) N AUC time (h)

5S rRNA 24 0.997 (0.956) 1.8 7776 0.997 149.0
tRNA 15 0.993 (0.957) 0.6 7776 0.995 67.5
C/D snoRNA 25 0.843 (0.773) 1.8 7776 0.887 124.8

H/ACA snoRNA 23 0.879 (0.832) 3.5 7776 0.906 248.0
miRNA 20 0.995 (0.971) 1.1 7776 0.995 89.0

Note: Family: name of the target ncRNA family. N: number of parameter sets tried.
AUC: area under the ROC curve, the value in parentheses is AUC calculated at the
start point of optimization. time: computational time on a 2.8 GHz AMD Opteron

processor. In the columns of the gradient-based optimization, mean values of 25

trials from the different start points are shown.

search. The AUC was substantially improved compared to the start point on aver-
age, and convergence was obtained within a few dozen of iterations. In particular,
we achieved the comparable discrimination ability to the grid search for 5S rRNAs,
tRNAs and miRNAs showing the effectiveness of the proposed method.

The second experiment was organized to visually demonstrate how our method
works in the parameter space. The idea was that we would show a trajectory of
optimization on the heat map of AUC. For this purpose, we focused only on α and
β, and fixed the other parameters. Thus, we defined the same box constraints for
α and β as in the first experiment, whereas we consistently used g = 27, e = 1,
and C = 1 for the others. We calculated AUC over the finer grid with 100 values
for each of α and β, and initiated the gradient-based optimization. Figure 3 shows
the corresponding heat map and the trajectory plot. We present the typical results
for the C/D snoRNA data set. The parameters α and β were moved sharply to
the direction of higher AUC, and well calibrated along with the iterations. Indeed,
the optimization in this case reached the region of highest AUC, and successfully
converged at the global optima in the parameter space.

4. Discussion

Our current implementation of the hyperparameter optimizer for BPLA kernels
does not optimize the substitution scoring function for RNAs (S′ in (2)) although
derivatives of substitution scores can easily be calculated. In fact, Saigo et al. have
proposed a method for optimizing substitution scores for local alignment kernels
using the gradient decent with respect to a confidence score for remote homology
search [?] (not with respect to the SVM classification). However, the optimization of
the substitution scoring matrix using the L-BFGS-B, which our method employed,
cannot hold the positive semidefiniteness of S′ and BPLA kernels, which is the
essential basis of kernel methods. This kind of optimization problems can be solved
by a method for semidefinite programming (SDP) [?]. Because of small effect of
changing substitution scoring matrices in our method (data not shown), we fixed
the substitution scoring matrix to a modified RIBOSUM 85-60 [?], in which its
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Fig. 3. Trajectory of parameter optimization on the heat map of AUC. AUC values evaluated for
the C/D snoRNA data set are represented by gradation over the parameter space. The optimization

was initiated from (α, β) = (6.50, 0.05), and terminated at (α, β) = (1.01, 0.09) after 35 iterations.

smallest eigenvalue is subtracted from each of its diagonal elements in order to
make it positive semidefinite.

5. Conclusion

We have developed a method for optimizing hyperparameters of BPLA kernels with
respect to discrimination accuracy using a gradient-based optimization technique.
Our experiments showed that the proposed method can find a nearly optimal set
of parameters much faster than the grid search on all parameter combinations.

We are planing to apply BPLA kernels to comparative analysis of functional
RNAs, which can consider the sequence conservation between species as well as the
structural conservation. For this purpose, the profile-profile comparison should be
implemented.
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