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3Chemistry Institute, University of São Paulo, Av. Lineu Prestes, 748 - São Paulo,
05508-000, Brazil

4Orthodontic Department, University Methodist of São Paulo, Rua Alfeu Tavares,

149 - São Bernardo do Campo, 09641-000, Brazil
5Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1
Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Biological experiments are usually set up in technical replicates (duplicates or tripli-
cates) in order to ensure reproducibility and, to assess any significant error introduced

during the experimental process. The first step in biological data analysis is to check the
technical replicates and to confirm that the error of measure is small enough to be of no
concern. However, little attention has been paid to this part of analysis. Here, we pro-

pose a general process to estimate the error of measure and consequently, to provide an
interpretable and objective way to ensure the technical replicates’ quality. Particularly,
we illustrate our application in a DNA microarray dataset set up in technical duplicates.

Keywords: reproducibility; quality control; technical replicate; Dahlberg’s error; DNA

microarrays

1. Introduction

Technical replicates are mandatory in most biosciences experiments in order to
ensure the results consistency and to identify and avoid possible measurement errors
derived from methodological/technical processes. However, little attention has been
paid to the analysis and quality control among replicates (for convenience, along
all the text, we will refer to “technical replicate” simply as “replicate”). In general,
discrimination between acceptable and poor replicates is carried out in a subjective
fashion, without interpretable or well-defined criteria and the replicates quality
control is not judiciously described, with little attention being paid to this initial
step of data analysis.

It is a common sense among biologists to use a pre-defined value to distinguish
acceptable replicates from poor replicates. For example, performing a Real Time
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RT-PCR experiment in duplicates, one may assume that a difference between the
replicates may not be greater than a given a priori set ∆. Despite that, this pre-
defined number ∆ does not differentiate between highly and lowly expressed genes,
i.e., it is not proportional to the gene expression value. To illustrate this limitation,
suppose ∆ = 0.5 and two genes, one with expression values equal to, respectively,
10 and 30. The proportion between 0.5 in 10 and 0.5 in 30 is totally different, i.e.,
∆ may be more restrictive for low expression genes than high expression ones. In
addition, it is difficult to statistically quantify the error of this pre-defined threshold,
which varies from one operator to the other.

A second problem is the analysis of the microarray data. It has been described
that some DNA microarrays such as Affymetrix, Agilent and Codelink [1, 3] provide
Pearson correlation coefficients between replicates greater than 0.9. For other plat-
forms, such as cDNA microarrays or the Mergen platform, the Pearson correlation
coefficient between technical replicates varies from a low value of 0.5 and a high
value of 0.95 [3, 12, 13]. For a detailed review about reproducibility in microarrays,
see Draghici et al. [7].

As described above, microarray reproducibility is usually measured by applying
Pearson’s correlation [16], in which a value close to one indicates good reproducibil-
ity, otherwise, a bad reproducibility. However, Pearson’s correlation assumes that
the variance along the data is equal, when it is known that the variance along the
spots in a microarray varies, i.e., there is heteroscedasticity [2, 26]. Moreover, Pear-
son’s correlation is a measure of proportionality, and not a measure of how much
the values of the spots from the second microarray are similar to those of the first
one (reproducibility). Mean and amplitude biases (systematic errors) cannot be de-
tected by correlation coefficient, therefore, Pearson’s correlation cannot be applied
to verify reproducibility. Kim et al. [15] have proposed the use of Spearman’s corre-
lation, nevertheless, analogously to Pearson’s, the former is a measure of association
and not of error.

In addition, correlation’s measures do not identify the poor quality spots or the
reproducibility of specific spots, but only provide the general association between
the replicated microarrays.

Here, we suggest a general method to estimate the measurement error based
on the concept of Dahlberg’s error [5], which may be applied in most biological
experiments involving technical replicates. Moreover, we present a solution which
overcomes some well-known limitations of Dahlberg’s error, such as homoscedas-
ticity and incorporation of bias (systematic errors). We also apply the proposed
method to actual DNA microarray data in order to illustrate usefulness of this ap-
proach. To this end, we model the heteroscedasticity, by providing a quality control
criterion for each spot, based on the replicated data.
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2. Materials and Methods

Primarily, we will describe an error of measure’s estimator based on the Dahlberg’s
method and its limitations. We then introduce an estimation, based on Support
Vector Regression, in order to overcome these limitations, and an algorithm to deal
with the heteroscedasticity problem in DNA microarray data.

2.1. Dahlberg’s Error (D.E.)

Consider the following model:

Zij = µi + εij (1)

where Zij is the measure obtained in one biological experiment, i is the sample
index i = 1, . . . , N , j is the replicate number (j = 1, 2 in the case of duplicates), µi

is the unknown true value of the measure and εij is the error of measure.
For the error of measure, assume that E(εij) = 0 and V ar(εij) = δ2

ε . Thus, one
possible quantification of the measure’s quality is the standard deviation of εij , i.e.,
δε. In other words, the lower is the standard deviation of the error of measure, the
more reproducible the method is.

Consider

di = Zi2 − Zi1 (2)

Therefore,

V ar(di) = V ar(εi2 − εi1) = 2δ2
ε (3)

Assuming that there is no bias (systematic error), one intuitive estimator for
2δ2

ε is

2δ̂2
ε =

N∑
i=1

d2
i

N
(4)

The quantity δ̂ε =
√∑N

i=1
d2

i

2N is exactly the Dahlberg’s formula proposed in
1940 in order to estimate the error of measure in cephalometric studies [5, 10, 11].
This estimator for the standard deviation of the error of measure is widely used in
Orthodontics [5, 6, 10, 11, 14, 20, 22] and may be interpreted as root of squared
error’s average.

One may use this standard deviation of the error of measure in order to check
whether the replicates are similar enough or not. It is known that approximately
95% of the values of a random sample generated from a normal distribution has
a mean between µ − 1.96δ2

ε and µ + 1.96δ2
ε . Consequently, one criterion to verify

whether replicates are similar or not may be:
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T =
1
2
(
1.96δε

|Zi1|
+

1.96δε

|Zi2|
) > α (5)

This quantity T indicates that in approximately 95% of the sample the ratio
between the error of measure and the observed measure is lower than T , in which
T is the proportion of error related to the measured value, allowing evaluation of
the performed error.

If T is greater than a defined α, the replicate may be excluded and the experiment
should be repeated. Notice that T is proportional to the measured data.

Unfortunately, the Dahlberg’s error is extremely affected by systematic er-
rors. Notice that any bias between the two measures is incorporated. Moreover,
Dahlberg’s error assumes equal means and variances between both measures. There-
fore, Dahlberg’s error does not discriminate between systematic error (biases in
measurement which leads to measured values systematically higher or lower than
the true value) and random error (unpredictable fluctuations in the measurements),
rendering the interpretation of the results very difficult.

In order to overcome these limitations, we suggest an approach based on Support
Vector Regression.

2.2. Support Vector Regression (SVR)

SVR is a robust regression developed by Vapnik and Lerner [23] and Vapnik and
Chervonenkis [24] and recently applied to Bioinformatics [8, 9, 17].

Let {(x1, y1), . . . , (xi, yi)} ⊂ R × R be the values obtained from biological ex-
periments performed in duplicates, where y is the replicate of x.

In ε-insensitive SVR [25], it is estimated by a function f(x) that has at the most
ε deviation from the yi for all the data, and is as flat as possible.

In other words, the intuitive idea is to define a tube of radius ε around the
regression, where ε > 0, and no error is computed if y lies inside the tube. Therefore,
outliers are naturally excluded from the regression computation (see Figure 1).

More technically, in the case of linear functions f :

f(x) = 〈wtx〉 + b (6)

with w ∈ Rn, b ∈ R.
Flatness in (6) means small w, i.e., minimize ||w||2.
Minimize

1
2
‖w‖2 (7)

Constrained to

{
yi − (wtxi) − b ≤ ε

(wtxi) + b − yi ≤ ε
(8)
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Fig. 1. An illustrative scheme of the linear SVR.

Notice that in (8) there is a function f which, with ε precision, approximates all
pairs (xi, yi). In the cases where it is necessary to allow for some errors, the problem
can be reformulated to [25]:

Minimize
1
2
‖w‖2 + C

∑
(ξi + ξ∗i ) (9)

Constrained to


yi − (wtxi) − b ≤ εi

(wtxi) + b − yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(10)

where ξi, ξ
∗
i are slack variables, the constant C > 0 is the trade-off between the

amount up to which deviations larger than ε are tolerated, maintaining the flatness
of f .

For more details about numerical computation and theoretical SVR information,
see Smola and Schölkopf [21].

2.3. Modeling DNA microarray data

As described in the Introduction, for microarray data, it is known that the variance
varies along the spots due to technical problems such as hybridization efficiency,
probe sequence, background fluorescence, signal quantification procedures [27, 28],
therefore, application of the Dahlberg’s formula is not straightforward. In order to
overcome this problem, we suggest the following algorithm:

Let X and Y be two DNA microarrays, with Y being the replicate of X.
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(1) Perform a non-linear regression which is robust to outliers, namely Support
Vector Regression [8] between log(X) and log(Y ), i.e., log(Y ) = f(log(X))+ε1.
Notice that the logarithm was calculated due to the high variance observed in
microarray data. This is a common practice in microarray data analysis. For
other biological replicates, which do not present high variance, such as Real
Time RT-PCR, it is not necessary to apply logarithm.

(2) Apply again the Support Vector Regression between ε2
1 and log(X), i.e., ε̂2

1 =
f(log(X)) + ε2.

(3) Calculate δ̂ = f(log(X))
2 , which is exactly the error of measure. Notice that with

this process, we obtain one δ̂i for each spot i = 1, . . . , N , where N is the number
of spots in the microarray.

(4) Calculate Ti = 1.96eδi

f(log(Xi))Xi
+ 1.96eδi

f(log(Xi))Yi
, i = 1, . . . , N , where N is the number

of spots in the microarray.

It is important to note that this method is based on the normality of the residues,
therefore, this condition must be checked.

This SVR-based method may be applied to any replicated data such as Real
Time RT-PCR, DNA microarrays, protein quantifications etc.

2.4. DNA Microarray

2.4.1. Cell Lysis and RNA Extraction

Cell cultures were lysed and their RNA extracted using the Illustra RNAspin Mini
RNA Isolation Kit (GE Healthcare), following the manufacturer’s instructions. Ab-
sorbance ratio at 260/280 ηm was used to assess the RNA purity, a ratio of 1.8-2.0
indicating adequate purity.

2.4.2. Labeling and purification of targets

RNA samples were prepared and processed according to protocols supplied by the
manufacturer (GE Healthcare). Briefly, cDNAs were synthesized from purified RNA
(1µg) and control bacterial mRNAs. Samples were purified using the QIAquick
Spin Kit (Qiagen) and concentrated by SpeedVac. Concentrated pellets were used
in a biotinylated-UTP based cRNA synthesis using the CodeLinkTM Expression
Assay Reagent Kit (GE Healthcare). Labeled cRNAs were purified using RNeasy
Kit (Qiagen) and fragmented with supplied solution at 94oC for 20 min.

2.4.3. Hybridization and washing of the DNA arrays

Fragmented biotin-labeled cRNAs (10µg) were incubated with CodeLinkTM bioar-
rays under agitation (300 rpm) for 20h. The bioarrays were then washed and in-
cubated with Cy5-streptavidin (30 min). Scanning of the bioarrays was performed
using a GenePix 4000 B Array Scanner (Axon Instruments) and the data were col-
lected using the CodeLinkTM System Software (GE Healthcare), which provides the
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raw data and invalidated data from irregular spots.

3. Results and Discussions

The proposed error’s estimator was applied to two sets of DNA microarrays, both
set up in technical duplicates, in order to illustrate the application.

In Figure 2, the first set of microarrays experiments in duplicates is presented,
constituting an example of an acceptable duplicate of microarrays, since the pro-
portion of rejected spots, i.e., number of rejected spots/total number of spots was
∼11%. The SVR fitted curve is in blue and the rejected spots (poor quality spots) in
red. Notice in Figure 2A that some bias occurs in microarrays experiments. More-
over, in Figure 2B, it is possible to verify that the variance is not constant, i.e., a
modest heteroscedasticity is found in the data.

Fig. 2. An example of acceptable reproducibility in duplicated microarrays. A) Fluorescence
intensities of Array 1 versus Array 2 plot of the first set of duplicates in log scale; B) Array 1
versus residues of the first set of duplicates with Array 1 in log scale. In red, the spots with
T > 10%; in blue, the fitted curve.

Similar characteristics may also be observed in the second set of microarrays
(Figure 3). Considering an α = 10%, the proportion of rejected spots was ∼38%,
therefore, this second set has a lower quality than the first one. It is interesting that
the variance is clearly high in the low signal spots (Figure 3B).

Notice that, in both cases, most of the spots marked in red display low expres-
sion, which is to be expected, since it is known that low signal spots display higher
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Fig. 3. An example of poor reproducibility in duplicated microarrays. A) Fluorescence intensities
of Array 1 versus Array 2 plot of the second set of duplicates in log scale; B) Array 1 versus

residues of the second set of duplicates, with Array 1 in log scale. In red, the spots with T > 10%;
in blue, the fitted curve.

variance than high signal ones [26]. Therefore, it is not possible to distinguish the
true signal from the noise background signal when the spot signal is low.

By calculating the Pearson’s correlation for both experiments, we have obtained
ρ1 = 0.90 (p-value < 0.01) and ρ2 = 0.93 (p-value < 0.01), respectively. Therefore,
using the Pearson’s correlation results, one may conclude that the replicates are
acceptable, however, the second set of replicates was previously described by our
estimator of error of measure as being unsatisfactory. This illustrates the fact that
high association (correlation) between duplicates is not the same as reproducibility.

In order to quantify the quality of the spots, several microarray analysis soft-
wares, such as CodeLinkTM System Software [18], ArrayVision v.8.0 (Imaging Re-
search Inc, Ontario, Canada) and TM4 [19] were developed. In most of them the
analysis is based on the ratio between the background signal and the spot signal,
and on the spot’s shape (if its shape is well defined) to distinguish acceptable ones.
It is a very important step, which should be performed, but, unfortunately, with
these approaches it is not possible to identify spots with high or low error in measure
derived from technical problems.

SVR does not require a high performance computer to be calculated, i.e., it may
be computed in a personal computer. If millions of measurements per chip become
available, by comparing a pair of technical replicates, we estimate that SVR may
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take of the order of a few minutes to compute using a personal computer, i.e., it is
totally feasible in practice.

Identification of high noise spots using replicates may be an additional criterion
to discard spots which may influence the following steps in the microarray analysis.
Therefore, sometimes, it is not necessary to discard the whole microarray due to
a few genes which present poor measures. One may consider to discard the whole
microarray if the number of rejected spots is higher than a certain ratio (number
of rejected spots / total number of spots), for example, 20%. Otherwise, one may
discard only the rejected spots.

Here, we have illustrated our estimator of error of measure for duplicates, but
for more than duplicates, it may be obtained, in a straightforward manner, by
calculating all di combinations among replicates.

In summary, we propose an interpretable and useful method in order to distin-
guish acceptable replicates from poor replicates. In addition, we have presented a
solution to overcome some well known problems within Dahlberg’s error and mod-
eled the heteroscedasticity present in microarrays. Our illustrative examples are
focused in gene expression data. However, the proposed general method may be
applied to any quantification procedure, such as, protein’s quantification or Real
Time RT-PCR experiments.
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