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This paper investigates applying statistical topic models to extract and predict relation-
ships between biological entities, especially protein mentions. A statistical topic model,
Latent Dirichlet Allocation (LDA) is promising; however, it has not been investigated for
such a task. In this paper, we apply the state-of-the-art Collapsed Variational Bayesian
Inference and Gibbs Sampling inference to estimating the LDA model. We also apply
probabilistic Latent Semantic Analysis (pLSA) as a baseline for comparison, and com-
pare them from the viewpoints of log-likelihood, classification accuracy and retrieval
effectiveness. We demonstrate through experiments that the Collapsed Variational LDA
gives better results than the others, especially in terms of classification accuracy and
retrieval effectiveness in the task of the protein-protein relationship prediction.
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1. Introduction

There have been increasing demands for organizing knowledge accumulated in doc-
uments and then generating potential hypotheses in biomedical fields. This paper
focuses on the task to predict relationships between biological entities. Research
trends on the biomedical relationship extraction can be categorized into: (1) meth-
ods using manually or automatically generated templates, (2) methods based on
natural language processing, and (3) statistical co-occurrence-based methods [1, 2].
This paper focuses on the third approaches targeting a specific type of biomedical
entities, proteins. While the natural language processing-based approaches usually
extract entity relationships within a document, statistical methods are based on co-
occurrence of biomedical entities or their related statements in a set of documents
to extract relationships between the entities. Statistical topic models are promising
for this objective.

Statistical topic models (e.g., [3, 4]) are based on the idea that documents are
mixtures of topics, where a topic is a probability distribution over words, in order
to capture semantics or to achieve dimensionality reduction. “Probabilistic Latent
Semantic Analysis” (pLSA) [5], proposed by Hoffman, can model underlying topics
for given documents; however, it cannot model the topics for unseen documents
that were not used for parameter estimation. Blei et al. [3] proposed one of the
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Fig. 1. The graphical model of LDA.

topic models called “Latent Dirichlet Allocation” (LDA) in an extension of pLSA,
introducing a Dirichlet prior on a multinomial distribution over topics for each doc-
ument. This makes the model applicable to unseen documents. The LDA model has
been accepted in various fields; however, it has not been investigated for predict-
ing biological entity relationships, to our knowledge. In this paper, we investigate
applying the LDA model to extract and predict protein-protein relationships from
biomedical literature. In the statistical topic modeling, a set of topics are usually
assumed to be unobserved in a document collection, and so we need to infer such
unknown distributions from the documents. To estimate the LDA model, “Col-
lapsed Gibbs Sampling inference”a method can be used [4]. “Collapsed Variational
Bayesian inference” (CVB) [6] is alternative approach to estimate the LDA model.

The focus of this paper is to investigate how to apply the LDA model to the
task of protein-protein relationship prediction from biomedical literature, and to
evaluate, in an extrinsic manner, the effectiveness over different model estimation
methods.

2. LDA and Estimation Algorithms

2.1. Generative Process of LDA

Figure 1 shows the graphical model of LDA. We formally describe generative process
of LDA [3], as follows,

(1) For all j documents sample θj ∼ Dir(α)
(2) For all k topic sample φk ∼ Dir(β)
(3) For each of the Nj words xi in document dj

(a) Sample a topic zi ∼ Mult(θj)
(b) Sample a word xi ∼ Mult(φzi)

aIt is sometimes simply called “Gibbs Sampling inference” [4].
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where Nj is the total number of words in document j. θ and φ indicate a per-
document topic distribution and a per-topic word distribution, respectively; and α

and β indicate hyperparameters that specify Dirichlet priors corresponding to θ and
φ, respectively.

Joint distribution of all the random variables and parameters in the LDA model
are given by the following equation:

p(x, z, θ, φ|α, β) =
D∏

j=1

Γ(Kα)
Γ(α)K

K∏

k=1

θ
α−1+njk·
jk ×

K∏

k=1

Γ(Wβ)
Γ(β)W

W∏
w=1

φβ−1+n·kw

kw (1)

where njkw is the number of word w assigned to topic k in document j, and ‘·’
means a corresponding index is marginalized. In other words, n·kw =

∑
j njkw and

njk· =
∑

w njkw. D, K and W indicate the number of documents, the number of
topics, and the size of the entire vocabulary, respectively.

Given the observed words x = {xij}, the task of Bayesian inference is to compute
the posterior distribution over the latent topic variable z = {zij}, the per-document
topic distribution θ = {θj} and per-topic word distribution φ = {φk}.

2.2. Collapsed Gibbs Sampling Inference

“Collapsed” Gibbs Sampling inference [4] uses the marginalized distribution over x
and z, as follows:

p(z,x|α, β) =
∏

j

Γ(Kα)
Γ(Kα + nj··)

∏

k

Γ(α + njk·)
Γ(α)

×
∏

k

Γ(Wβ)
Γ(Wβ + n·k·)

∏
w

Γ(β + n·kw)
Γ(β)

(2)
Given the current state of all except one topic assignment to a word xij , the condi-
tional probability of zij is given by:

p(zij = k|z¬ij ,x, α, β) =
(α + n¬ij

jk· )(β + n¬ij
·kxij

)(Wβ + n¬ij
·k· )−1

∑K
k′=1(α + n¬ij

jk′·)(β + n¬ij
·k′xij

)(Wβ + n¬ij
·k′·)−1

(3)

where n¬ij corresponds to variables or counts excluding xij and zij . The condi-
tional probability specified by Eq. (3) can be used to carry out the Collapsed Gibbs
Sampling inference.

2.3. Collapsed Variational Bayesian Inference

Very recently, Collapsed Variational Bayesian inference (CVB) was proposed and
applied to estimate the LDA model [6]. According to [6], this section briefly de-
scribes the CVB method. The CVB method is an algorithm that improves the
estimation accuracy in an extension of Variational Bayesian inference (VB) [3]. The
CVB method models the dependence of the parameters on the latent variables, in-
stead of assuming independence. The only assumption made in the CVB method



September 3, 2009 16:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in 10-Aso

4 T. Aso & K. Eguchi

is that the latent variables z are mutually independent, thus the posterior can be
approximated as:

q(z, θ, φ) = q(θ, φ|z)
∏

ij

q(zij |γij) (4)

where q(zij |γij) is multinomial distribution with parameter γij . The variational free
energy can be simplified to:

F (q(z)) = min
q(θ,φ|z)

F (q(z)q(θ, φ|z)) = Eq(z)[− log p(x, z|α, β)]−H(q(z)) (5)

Minimizing Eq. (5) with respect to the variational parameters γijk, we get:

γijk = q(zij = k) =
exp(Eq(z¬ij)[p(x, z¬ij , zij = k|α, β)])

∑K
k′=1 exp(Eq(z¬ij)[p(x, z¬ij , zij = k′|α, β)])

(6)

Using Eq. (2), expanding log Γ(η+n)
Γ(η) =

∑n−1
l=0 log(η+ l) for positive real values η and

positive integers n, we get:

γijk =
exp(Eq(z¬ij)[log(α + n¬ij

jk· ) + log(β + n¬ij
·kxij

)− log(Wβ + n¬ij
·k· )])

∑
k′ exp(Eq(z¬ij)[log(α + n¬ij

jk′·) + log(β + n¬ij
·k′xij

)− log(Wβ + n¬ij
·k′·)])

(7)

3. Protein-Protein Relationship Prediction based on LDA

The LDA model can represent semantics or concepts that appear in a document.
Therefore, it can be applied to compute likelihood that an entity is related to another
entity. Using the LDA model, similarity between a pair of entities can be computed
by the following equation.

Sim1(ei, ej) = p(ei|ej)/2 + p(ej |ei)/2. (8)

where p(ei|ej) is obtained using latent topic k by:

p(ei|ej) =
∑

k

p(ei|k)p(k|ej). (9)

In [7, 8], Eq. (8) was used to compute similarity between social entities that appear
in newspaper articles; however, we believe that this similarity computation has
some problems. One of the problems is that the similarity largely depends on a
small number of frequently appearing entities. For instance, even when the value of
p(ei|ej) is very large and p(ej |ei) is almost zero, the final similarity given by Eq. (8)
is still large because this similarity is computed by averaging these two conditional
probabilities.

To address such problems, we define a new method to compute similarity be-
tween a pair of entities, as follows:

Sim2(ei, ej) = p(ei|ej)× p(ej |ei). (10)

This equation indicates joint probability of P (ei|ej) and P (ej |ei) assuming that
these are independent of each other.
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4. Data and Entity Representation

In this section, we briefly explain GENIA collection and TREC collection that we
used for our experiments. Table 1 shows a summary of these datasets.

4.1. GENIA Collection

GENIA collectionb is a subset of MEDLINE formatted in XML, and entities such
as proteins are manually tagged. We removed standard 418 stop words used in
“InQuery system” [9], and words and entities that were observed in less than 10
documents (abstracts).

4.2. TREC Collection and GENIA Tagger

Another data collection is TREC collection that was used in TREC Genomic Track
from 2004 to 2005, formatted in XML. We extracted titles and abstracts of doc-
uments from the collection. First, we used a subset of documents (abstracts) in
which values in “PubData” and “DataComplete” fields are 2002 for training, and
another subset of documents in which values of these fields are 2003 for testing in
Section 5.2. Second, we removed standard 418 stop-words from the training and test
data, and removed words and entities that were observed less than 10 documents
from the training data. In TREC collection, entities are not tagged and thus we
identified biomedical entities using GENIA taggerc.

Table 1. Datasets extracted from GENIA and TREC collection.

Data item name GENIA TREC(2002) TREC(2003)

D The number of documents (abstracts) 2000 33000 31000
W The number of vocabulary words 1959 16879 183710
E The number of vocabulary entities 229 1897 58430

Wfreq The total frequency of words 107532 3501405 3863255
Efreq The total frequency of entities 9733 48457 171056

5. Experiments

5.1. Log-Likelihood

We describe the way to compute the log-likelihood of each estimated model. The
larger per-word test-set log-likelihood of estimated model is, the higher the perfor-
mance of the model is. In this experiment, we computed the log-likelihood of two
models. One model was estimated by Collapsed Gibbs Sampling inference, and the
other was estimated by Collapsed Variational Bayesian Inference (CVB). In the

bhttp://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/wiki.cgi
chttp://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
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experiments, we used GENIA collection and 2002’s dataset extracted from TREC
collection. We randomly divided each dataset into 90% and 10%, and we used the
former as training data, and the latter as test data. When we compute the log-
likelihood, we set the number of topic of LDA as K = 10. For the hyperparameters
of Dirichlet priors, we set α = 0.1 and β = 0.1 [6] for GENIA collection, and
α = 50/K and β = 0.1 [8] for the dataset from TREC collection.

For Collapsed Gibbs Sampling inference (GS), given S samples from the poste-
rior, the log-likelihood is given by:

p(xtest) =
∏

ij

∑

k

1
|S|

S∑
s=1

θs
jkφs

kxtest
ij

(11)

where θs
jk and φs

kw are computed by:

θs
jk =

α + ns
jk·

Kα + ns
j··

φs
kw =

β + ns
·kw

Wβ + ns
·k·

. (12)

For the CVB method, the log-likelihood is computed by:

p(xtest) =
∏

ij

∑

k

θ̄jkφ̄kxtest
ij

(13)

where θ̄jk and φ̄kw are computed by:

θ̄jk =
α + Eq[njk·]

Kα + Eq[nj··]
φ̄kw =

β + Eq[n·kw]
Wβ + Eq[n·k·]

. (14)

The horizontal axis in Figure 2 (a) and (b) correspond to the number of iter-
ations, the vertical axis corresponds to per-word log-likelihood. The log-likelihood
in Figure 2 (a) was obtained by running each of the two inference algorithms 50
times with different random initializations (S = 50) and averaging the resulting
test-set log-likelihood. Moreover, Figure 3 indicates histograms of per-word test-
set log-likelihood across 50 random initializations, obtained by the two inference
algorithms using GENIA collection. Comparing with the log-likelihood using Col-
lapsed Gibbs Sampling (GS), that using the CVB method was found larger from
10 to 20 iterations; however, it is smaller when more iterations are performed. This
indicates the Gibbs sampling method works better than the CVB method when a
sufficient number of iterations are carried out, from a viewpoint of log-likelihood (or
perplexity) of the estimated models. This result is similar to that was tested using
non-biomedical collections [6]. However, in the following section, we demonstrate
that our task-based extrinsic evaluation is not the case.

5.2. Entity-Link Prediction

For evaluation of protein-protein relationship prediction task, we predicted protein-
protein pairs using the LDA model estimated by Collapsed Gibbs Sampling and
that by the CVB method, and the pLSA model, with a couple of different similarity
computations that were described in Section 3. In this experiment, we used EM
algorithm to estimate pLSA.
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Fig. 2. Per-word test-set log-likelihood over a couple of collections.
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Fig. 3. Histograms of per-word test-set log-likelihood over GENIA collection.

5.2.1. Experimental Settings

We used the datasets extracted from TREC collection: 2002’s dataset for training
and 2003’s dataset for testing, as described in Table 1. We generated two types of
entity-entity datasets. One is “true pair” dataset, in which each pair did not co-
occur within any document in the training data, but co-occurred within at least one
document in the test data. We removed the entity pairs, one of which entities did
not appear in any document in the training data. The other is “false pair” dataset,
in which each pair never co-occurred within any document both in the training
data and the test data. The number of true pairs is equal to that of false pair, as
M = 15494.

In the experiments, we set five different numbers of topics for the LDA model
and the pLSA model: K = 10, 50, 100 and 300. For the hyperparameters of Dirichlet
prior distributions, we set α = 50/K and β = 0.1 in both algorithms of LDA model
estimation.

5.2.2. Task-based Evaluation

We computed similarity of M true pairs and M false pairs, and ranked 2M total
pairs in descending order of the similarity. We then assumed the top M entity-entity
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Table 2. Classification Accuracy.

CGS-LDA CVB-LDA pLSA

K=10 0.6318 0.6310 0.6075
K=50 0.5359 0.6434 0.5829
K=100 0.5669 0.6383 0.5648
K=300 0.5504 0.6317 0.5293

Table 3. Average Precision.

CGS-LDA CVB-LDA pLSA

K=10 0.6745 0.6651 0.6347
K=50 0.6574 0.6895 0.5977
K=100 0.6443 0.6905 0.5606
K=300 0.6262 0.6890 0.5308

Table 4. Comparison of two different similarity com-
putations (in the case of CVB-LDA).

ClassificationAccuracy AveragePrecision

Sim1 Sim2 Sim1 Sim2

K=10 0.6310 0.6351∗ 0.6651 0.6719∗

K=50 0.6434 0.6467∗ 0.6895 0.6947∗

K=100 0.6383 0.6398∗ 0.6905 0.6940∗

K=300 0.6317 0.6305∗ 0.6890 0.6892

Note: “*” indicates that the result of Sim2 was 0.05
level significant via Wilcoxon signed rank test, com-
pared to the result of Sim1 with the same topic number.

pairs to be positive, and the other M pairs to be negative. We computed classifi-
cation accuracy that is given by the proportion of true-positive and false-negative
pairs, changing the parameter K setting, and compared the classification accuracy.
In the experiments, we used two methods to compute the similarity between entity
pairs: one is the existing method presented in Eq. (8) and the other is our method
presented in Eq. (10), and compared the results of these methods.

Table 2 shows the classification accuracy results with each parameter. In this
table, we found that the classification accuracy of the CVB-based LDA worked best
when K = 50. The LDA based on CVB worked better than that based on the
Collapsed Gibbs Sampling (CGS) and than pLSA, with 0.05 level significance via
Wilcoxon signed rank test in case of using the optimal topic number in each model.

We further evaluated using average precision [10], which is widely used to evalu-
ate information retrieval. Average precision was computed by averaging precision at
each rank of true-positive entity pairs. In this paper, we sometimes refer to average
precision as “ranking effectiveness” in contrast to classification accuracy. Table 3
shows the evaluated results of average precision with each parameter. Ranking ef-
fectiveness of LDA based on CVB worked best when we set K = 100. The results
of LDA based on CVB were better than the results of Collapsed Gibbs Sampling
inference and than the results of pLSA, both with statistical significance in the same
manner as in the last paragraph.

Table 4 shows that our proposed similarity computation worked better than the
previous one in case of LDA based on CVB, at a statistically significant level of
0.05 in almost every test.
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Fig. 4. An example entity-entity network

5.2.3. Protein-Protein Relationship Network

In the previous section, we investigated how well knowledge contained in the test
data in the year of 2003 can be predicted using the LDA model that was estimated
over the training data in the year of 2002. Figure 4 shows an example of the predicted
protein-protein network using the LDA model with the best condition that was
determined by the results in Section 5.2.2. This network consists of top-ranked 50
entity-entity pairs in order of similarity. In the network, vertices represent protein
names. As for the length of edge, the tighter the relationship between a pair of
vertices connected to an edge is, the shorter the edge will be.

6. Conclusions

In this paper, we presented how to generate hypotheses, especially on protein-
protein relationships, from the biomedical literature using the LDA model, and
compared the LDA model estimated via different inference approaches and the
pLSA model. For the LDA model, we investigated a couple of model estimation
methods: one is Collapsed Variational Bayesian method and the other is Collapsed
Gibbs Sampling method. We found that both LDA models worked better than pLSA
in terms of classification accuracy and ranking effectiveness.

We further found that the LDA based on Collapsed Variational Bayesian method
worked better than that based on Collapsed Gibbs Sampling method in terms of the
evaluation measures mentioned above. We also proposed a new method to compute
similarity between entities using the LDA model, and indicated that the proposed
method worked better than the previous method. Since our approaches do not
require specific knowledge on target entities, other various types of entities can also
be targeted.

The above-mentioned findings with a couple of inference approaches for the LDA
model were opposite to what was found in terms of test-set log-likelihood, and thus it



September 3, 2009 16:1 WSPC - Proceedings Trim Size: 9.75in x 6.5in 10-Aso

10 T. Aso & K. Eguchi

suggests that intrinsic evaluation, such as using test-set log-likelihood or perplexity,
does not always indicate the same findings as task-based extrinsic evaluation. One
of the future tasks is to investigate why this happens, theoretically. Another task is
to combine the Collapsed Variational Bayesian LDA model with non-cooccurrence-
based approaches, such as based on natural language processing. Examining how
the topic-based method is actually useful to protein-protein interaction prediction
is also left to future work.
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