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Protein complexes are responsible for most of vital biological processes within the cell.
Understanding the machinery behind these biological processes requires detection and
analysis of complexes and their constituent proteins. A wealth of computational ap-
proaches towards detection of complexes deal with clustering of protein-protein interac-
tion (PPI) networks. Among these clustering approaches, the Markov Clustering (MCL)
algorithm has proved to be reasonably successful, mainly due to its scalability and ro-
bustness. However, MCL produces many noisy clusters, which either do not represent
any known complexes or have additional proteins (noise) that reduce the accuracies
of correctly predicted complexes. Consequently, the accuracies of these clusters when
matched with known complexes are quite low. Refinement of these clusters to improve
the accuracy requires deeper understanding of the organization of complexes. Recently,
experiments on yeast by Gavin et al. (2006) revealed that proteins within a complex
are organized in two parts: core and attachment. Based on these insights, we propose
our method (MCL-CA), which couples core-attachment based refinement steps to refine
the clusters produced by MCL. We evaluated the effectiveness of our approach on two
different datasets and compared the quality of our predicted complexes with that pro-
duced by MCL. The results show that our approach significantly improves the accuracies
of predicted complexes when matched with known complexes. A direct result of this is
that MCL-CA is able to cover larger number of known complexes than MCL. Further, we
also compare our method with two very recently proposed methods CORE and COACH,
which also capitalize on the core-attachment structure. We also discuss several instances
to show that our predicted complexes clearly adhere to the core-attachment structure as
revealed by Gavin et al.
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1. Introduction

One of the most interesting challenges of postgenomic biology is to understand
how proteins interact and organize themselves to generate vital biological func-
tions. Biological processes such as cell cycle, replication, and signal transduction
require precise arrangement of protein molecules for proper assembly and function.
However, many principles as to how individual proteins form such molecular struc-
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tures are still unknown. Protein complexes are amongst the fundamental units of
this macromolecular organization and are responsible for most of vital biological
processes within the cell. For example, the HOPS complex associates with the vac-
uolar membrane and is involved in homotypic fusion and vacuole protein sorting
in yeast [11]. Therefore, understanding the underlying organizational principles of
cellular machinery requires detection and analysis of protein complexes.

Most computational methods for detection of protein complexes work on protein
interaction data. The interactions among proteins are assembled in the form of a
protein-protein interaction (PPI) network: each node represents a unique protein,
and an edge between a pair of nodes represents an interaction (verified through
reliable biological experiments) between the two corresponding proteins. Transient
interactions are not considered. PPI networks are undirected and may be unweighted
or weighted, with the weight on an edge representing the confidence score (usually
between 0 and 1) for the interaction. Protein complexes within the PPI network form
stable subnetworks which are believed to have relatively more number of interac-
tions. Therefore, most computational methods focus on detecting dense subnetworks
within the PPI network.

A wealth of methods make use of graph clustering procedures to detect com-
plexes [2, 6, 13]. The K-means and hierarchical clustering methods are the classical
ones, along with some more recent ones (see [6]). Clustering is an unsupervised
learning method that identifies intrinsic similarities between data elements in or-
der to group them into disjoint or overlapping substructures. It typically involves
a metric or similarity measure to achieve this grouping. It requires solving an opti-
mization problem to arrive at the best solution (global minimum of a defined error
quantity). However, the application of clustering approaches to biological networks
encounters yet another challenge: their ability to deal with high levels of noise.

Among the clustering algorithms, the Markov Clustering Algorithm (MCL) has
become very popular since its proposal in 2000 [2]. It is a fast and scalable unsu-
pervised clustering algorithm. It makes use of the concept of random walks: given
a graph G, assume a walk taken along the graph starting at an arbitrary node
v. The walker visits every neighbor u of v with equal probability. If she enters a
dense region of GG, she will remain in the dense region with high probability. So, by
simulating a large number of random walks (called a flow), the underlying cluster
structure in the graph can be identified. Unlike other clustering procedures, MCL
considers the connectivity properties of the underlying network, and is therefore
capable of deriving clusters that are relatively dense, even though they may not
have high absolute densities.

So far, MCL seems to be the most successful clustering algorithm for deriving
protein complexes from PPI networks [3, 13]. It was shown to outperform a number
of algorithms like MCODE [1] specifically designed for partitioning PPI networks.
It has been used for comprehensive analysis of complexes derived from the yeast
interactome [7, 12]. Very recently, Vlasblom et al. [13] showed that MCL performed
far better than other successful algorithms like Affinity Propagation (AP) [4] on
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PPI networks. MCL was shown to be highly robust and tolerant to varying levels
of noise, typical to biological networks.

Inspite of these advantages, MCL has some limitations when applied to PPI net-
works. MCL mainly produces disjoint clusters from the underlying network (though
rarely it may report overlapping clusters by changing some ‘options’ in the software).
However, it is known from previous studies [1] that protein complexes may be over-
lapping: a protein may take part in more than one complex. Secondly, MCL is a
general network clustering algorithm and does not take into account the biological
properties or organization within protein complexes. Our experiments show that
MCL produces many noisy clusters, which either do not represent any known com-
plexes or have additional proteins (noise) that reduce the accuracies of correctly
predicted complexes. Consequently, the accuracies of these clusters when matched
with known complexes are quite low. Additionally, MCL generates many clusters
without actually ranking them using some biologically meaningful criteria.

In view of the existing interest in applying MCL (and clustering methods in
general) to identify complexes from PPI networks, this paper attempts to make use
of the advantages of MCL, and also overcome some of the limitations mentioned
above. We refine the clusters produced by MCL to improve their accuracies. These
refinement steps make use of deeper understanding of protein complex organization,
recently revealed by Gavin et al. [5].

The experiments by Gavin et al. [5] on yeast revealed that proteins within a com-
plex are organized as cores and attachments (see Figure 1 in supplementary materi-
als). These core proteins show high-level of functional similarity and have relatively
more interactions among themselves. Attachment proteins are closely-associated
with these core proteins, and they together form the complex. An attachment pro-
tein may be present in more than one complex. Among the attachments there may
be modules, which are sets of two or more proteins always together and present in
multiple complexes.

We propose our method to refine the clusters produced by MCL using the core-
attachment structure as revealed by Gavin et al.’s work. We call our method MCL
coupled with Core-Attachment (MCL-CA). Very recently (2009), Henry Leung et
al. proposed the CORE algorithm [8], and Min Wu et al. proposed the COACH
algorithm [9], which also make use of the core-attachment structure to predict com-
plexes from PPI networks.

We tested MCL-CA on two high-quality yeast PPI datasets from Gavin et al. [5]
and Krogan et al. [7]. We show that MCL-CA is able to significantly improve the
accuracies of complexes predicted by MCL when matched with known complexes. A
direct result of this is that MCL-CA is able cover larger number of known complexes
than MCL. Further, we also compare our method with CORE and COACH, since
these two methods also capitalize on the core-attachment structure.
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2. Methods

In this section, we describe the various steps in our computational approach. Be-
fore we describe our algorithm, we introduce a few notations. Our PPI graph is
undirected and unweighted, and is denoted as G = (V, E), where V is the set of
proteins and E is the set of interactions between the proteins. Any subgraph of G
is represented as S = (Vs, Ey) for V; CV and E; C E. For a protein p € V., N(p)
is the set of neighbors of p. Our algorithm is structured as a sequence of following
steps:

Cluster the PPI graph using MCL.
Determine core proteins.
(iii) Filter out noisy clusters.

(iv) Determine attachment proteins.
(v) Determine module proteins.
(vi) Determine complexes and rank them.

2.1. Clustering the PPI graph using MCL

The first step in our algorithm is to cluster the PPI graph using the MCL algorithm.
Upon running MCL on G = (V, E), we obtain a set of k disjoint clusters of proteins,
given by {C; : C; = (V;, E;),1 < i < k}, where V; C V and E; C E. Also, |, V; = V.
And, for any 1 <4,j < k,i # j, V;NV; = 0. Among these clusters, we discard away
all clusters of size 1 and retain the remaining.

2.2. Determining core proteins

Core proteins, as described by Gavin et al. [5], show greatest degree of physical
association, high similarity in expression levels, and represent functional units within
complexes. In our model, we consider core proteins as the set of proteins that satisfy
the following two properties: (a) Every complex has a set of core proteins; (b)
The core proteins in a protein complex have relatively more interactions among
themselves, and less interactions with proteins outside the complex.

We categorize a protein p € V; to be a core protein in cluster C;, given by
p € Core(C}), if: (a) The in-degree of p with respect to the cluster C; is greater
than the average in-degree of C;, given by: din(p, Ci) > davg(C;); and (b) The in-
degree of p with respect to C; is greater than the out-degree of p with respect to
C;, which is given by: d;,,(p, C;) > dout(p, C;). The in-degree of p € V; with respect
to C; is the number of interactions p has with proteins within the cluster C;. It is
defined as d;, (p, C;) = |N(p, Ci)| = {(p,q) : (p,q) € Ei,q € V;}|. Similarly, the out-
degree of p € V; with respect to C; is the number of interactions p has with proteins
outside the cluster C;. It is defined as dou(p, Ci) = [{(p,7) : (p,7) € E,r ¢ V;}|.
Then the average in-degree of cluster C; is the average of in-degrees of all proteins
within Cj, given by da.e(Ci) = > din(p, Ci)/|Cil.
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2.3. Filtering out noisy clusters

As per Gavin et al.’s work [5], core proteins represent functional units within com-
plexes. Therefore, we consider clusters without any core proteins as noisy clus-
ters. Additionally, our experiments showed that MCL produces many isolated two-
protein clusters (two proteins linked to each other, and not linked to any other
protein) that have very low significance and do not represent any real complexes.
We consider all such clusters as noisy and filter them out.

2.4. Determining attachment proteins

Attachment proteins, as described by Gavin et al. [5], are densely associated with
the core proteins, and show greater heterogeneity in expression levels. In our model,
we consider attachment proteins as the set of proteins that satisfy the following
property: The attachment proteins of any complex are densely connected to the
core proteins of that complex. An attachment protein is not unique to a complex,
instead may be present in more than one complex.

We categorize the attachment proteins in cluster C; into local and foreign at-
tachments, together represented by the set Attach(C;). We consider a protein p to
be a local attachment in cluster C; if: (a) p € V;; and (b) p is a common neighbor to
at least half the core proteins in C;, that is, |[N(p, C;) N Core(C;)| > |Core(C;)|/2.
However, our experiments revealed that with (b) we might miss out some true lo-
cal attachments and therefore, we also include the following heuristic: if p € V; is
connected to at least two core proteins in C; but has more neighbors within C;
than outside, that is, |[N(p, C;) N Core(C;)| > 2 and d;n(p, C;) > dout(p, C;), then
p is a local attachment in C;. We consider a protein p to be a foreign attachment
in cluster C; if: (a) p ¢ V;; and (b) p is a common neighbor to more than half
core proteins of Cj, that is, |[N(p,C;) N Core(C;)| > |Core(C;)|/2 and |C;| > 2.
With these properties, p may be an attachment in two clusters C; and Cj, that is,
p € Attach(C;) and p € Attach(C}).

2.5. Determining module proteins

Modules, as described by Gavin et al. [5], are groups of proteins that are most likely
to be in direct physical contact with cores, show greatest degree of functional simi-
larity, are least likely to be present partially, and give rise to “cross-talk” between
various functional categories. In our model, we consider modules as proteins that
satisfy the following two properties: (a) The set of module proteins of a complex
form a proper subset of the attachment proteins in that complex; (b) The set of
module proteins are present in more than one complex in entirety.

Let proteins p and ¢ be attachments in two clusters C; and C';. We consider the
set M = {p, q} to be a module in clusters C; and C}, if M is present in entirety within
the attachment sets of C; and Cj. This is given by the condition: M C Attach(C;)
and M C Attach(C;). Note that M can have more than two proteins and may be
present in more than two clusters as well.
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2.6. Determining complexes and ranking them

As per Gavin et al.’s work [5], protein complexes are composed of cores and at-
tachments. In our model, we form a unique protein complex C/ from each cluster
C;: The constituent proteins of the complex C! include all the core and attach-
ment proteins of C;. We discard away all proteins categorized as neither cores nor
attachments. Therefore, C] = (V/, E!), where V/ = [Core(C;) U Attach(C;)] and
E!l ={(p,q) : (p,q) € E,p € V/,q € V/}. The resulting protein complexes may be
overlapping with attachment proteins forming part of multiple complexes.

After the protein complexes are constructed, we rank them based on a scoring
function Score, which is based on the edge density v and in-to-out ratio R of the
complexes. The scoring function for C} is defined as: Score(C}) = v(C}) * R(CY),
where v(Cj) = |Ej|/|E},,.,| and R(C}) = |E],;.|/|E;|. Here, E; . is the set of all

possible interactions between proteins in V;/, that is, |E}, (VD)= (V| -1)/2,

ami| -

and Ej,, is the set of all external interactions involving proteins in V;, that is,
Eour, = 10, 0) = (p,q) € E;p € Vg ¢ Vi)

3. Results and discussions

We extended the MCL software [2] to implement MCL-CA using C/C++ combined
with PL/SQL on a Pentium P4 Dual Core 3GHz 2GB RAM Linux machine. We
used two high-quality protein-protein interaction datasets of yeast from Gavin et
al. [5] and Krogan et al. [7]*. The details of the datasets are shown in Table 1.
As of now, biological experiments to show the core-attachment structure have been
revealed only on yeast, so we do not know yet whether complexes of other organisms
display similar structures.

Table 1. Details of datasets

Dataset Number of  Number of Average number of
proteins interactions  interactions per protein

Gavin, 2006 1430 6531 10.62

Krogan, 2006 | 2675 7080 6.98

For the evaluation of our predicted complexes, we used the manually curated
yeast complexes from Wodaklab [10] as the benchmark. The Wodaklab CYC2008P
catalogue contains 408 yeast complexes. Each of our predicted complexes was com-
pared to the known complexes from the benchmark. For this, we used the accuracy
measure as proposed in [1], given by Acc = (Nc)2/(Np.Nt), where N, is the number
of common proteins shared by the predicted and known complexes, and N, and N;
are the numbers of proteins in the predicted and known complexes, respectively.

2Gavin and Krogan download from GRID database [BioGRID version 2.0.33]: http://www.
thebiogrid.org/
bWodaklab Curated complexes 2008: http://wodaklab.org/cyc2008/
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If the accuracy is greater than or equal to a threshold ¢, we assume the known
complex has been found in our dataset. Sensitivity is the proportion of known com-
plexes found for a given threshold. Finally, we used the co-annotations from Gene
Ontology® to validate the functional similarities between proteins within complexes.

3.1. Improvement over MCL

We did a three-fold comparison between MCL and MCL-CA in terms of: (a) the
total number of predicted complexes; (b) the number of predicted complexes that
matched known complexes; (c) the accuracies of predicted complexes. Table 1 in
supplementary materials compares the total number of complexes predicted by MCL
and MCL-CA (with inflation = 2.0) from the two datasets. It shows that MCL
produced many insignificant (noisy) clusters, which were discarded by MCL-CA in
the filtering step. Table 2 shows the number of known complexes that were correctly
predicted by MCL and MCL-CA for thresholds ¢ = {0.6,0.7,0.8}. The number of
known complexes covered by MCL-CA was significantly higher than that of MCL
for all threshold values. There was no complex correctly predicted by MCL that was
missed by MCL-CA. The difference in the numbers of known complexes covered by
MCL and MCL-CA was larger for threshold ¢ = 0.6 than for ¢ = {0.7,0.8}. For
example, for the Gavin dataset, MCL-CA covered 14 more known complexes for
t = 0.6, and 8 more known complexes for t = 0.8.

Table 2. No. of known complexes predicted by MCL and MCL-CA

No. of known complezes correctly predicted for t = {0.6,0.7,0.8}.

Dataset t=20.6 t=20.7 t=20.8
MCL MCL-CA | MCL MCL-CA | MCL MCL-CA

Gavin 53 67 38 45 27 35

Krogan | 81 100 48 65 36 50

In order to analyse the variation in increase in the number of known complexes
covered by MCL-CA over MCL, we considered two sets of complexes predicted
each from Gavin and Krogan datasets: (a) set A = MCL N MCL-CA consisted of all
complexes correctly predicted by both methods, but with different accuracies; (b) set
B = MCL-CA \ MCL consisted of all complexes correctly predicted by MCL-CA
and not by MCL. The accuracy threshold was set to ¢t = 0.6. For the Gavin dataset,
|A| = 16 and | B| = 14, while for the Krogan dataset, |A| = 23 and |B| = 19. Table 3
shows the minimum, maximum and average increase in accuracies for MCL-CA over
MCL for the complexes in sets A and B. The increase in accuracies for predicted
complexes in A was noticably high, with the average being 16.01% and 15.29% for
Gavin and Krogan datasets, respectively. The increase in accuracies for predicted
complexes in B was significant, with the average being 53.02% and 51.34% for Gavin

¢Gene Ontology: http://geneontology.org
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and Krogan datasets, respectively. Tables 2 and 3 show that MCL-CA significantly
improved the accuracies of many low quality complexes present in the datasets. As
a result, these low quality complexes, which were difficult to be covered by only
MCL, matched known complexes with better accuracies and therefore covered by
MCL-CA.

Table 3. Overall increase in accuracy for MCL-CA over MCL for ¢t = 0.6
A = MCLN MCL-CA; B = MCL-CA \ MCL.
Increase in accuracy(%)
A B
Dataset | Min Mazx Avg Min Max Avg
Gavin 5.0% 40.84% 16.01% | 13.21% 103.03%  53.02%
Krogan | 4.16% 63.93% 15.28% | 11.11% 91.0% 51.34%

Table 2 in supplementary materials displays the improvement in accuracies for
a sample of 10 complexes predicted from the Gavin dataset with threshold ¢ = 0.6.
The complexes in the upper half belonged to set A, while those in lower half belonged
to set B. The improvement was noticably high for complexes in set A. For example,
the Exocyst complex. The improvement was significant for complexes in set B.
These were the low quality complexes that did not match any known complex with
accuracy > t = 0.6 using only MCL. MCL had induced many additional (noise)
proteins in these complexes. With the refinement due to MCL-CA, these matched
known complexes with better accuracies. For example, the COPI complex.

Table 4. Comparisons between all four methods

No. of known complezxes correctly predicted for t = {0.6,0.7,0.8}

Threshold t | Dataset MCL MCL-CA COACH CORE
0.6 Gavin 53 67 59 73
Krogan 81 100 96 106
0.7 Gavin 38 45 43 48
Krogan 48 65 59 89
0.8 Gavin 27 35 39 31
Krogan 36 50 53 65

3.2. Comparisons with CORE and COACH

CORE [8] and COACH [9] are two very recently (2009) proposed methods that
also make use of the core-attachment structure to detect complexes from yeast
PPI networks. However, all the three methods (CORE, COACH and MCL-CA) are
different from one another in the computational essense. While CORE calculates
p-values between proteins within the entire network and builds cores from them,
COACH finds dense subgraphs (preliminary cores) and adds attachments to them.
COACH and MCL-CA are significantly faster computationally compared to CORE.
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Fig. 1. Overlaps in known complexes covered by CORE, COACH and MCL-CA for t = 0.6 on
the Gavin dataset.

On the same Gavin and Krogan datasets, CORE produced 295 and 819 com-
plexes, while COACH (filter = 0.225) produced 326 and 345 complexes, respec-
tively. We matched these complexes against the same benchmark. Since each method
produced different number of complexes and with or without ranking, we considered
all the produced clusters for the comparison. Table 4 summarizes this comparison.
Though COACH and CORE performed better than MCL-CA at higher thresholds,
MCL-CA was successful in substantially increasing the accuracies of mainly low
quality complexes beyond the threshold ¢t = 0.6. The ratios of correctly predicted
complexes to total clusters produced were also higher for MCL-CA for ¢t = {0.6,0.7}.
Figure 1 shows the overlaps in known complexes covered by the three methods for
t = 0.6 on the Gavin dataset: CORE N MCL-CA = 56, COACH n MCL-CA =
41, CORE N COACH = 49, and CORE N COACH N MCL-CA = 37. This shows
among the three methods, there is none which totally covers all complexes predicted
by another.

3.3. Analysis of complexes predicted by MCL-CA

We visualized the predicted complexes of MCL-CA using Cytoscape environment<.
The supplementary materials contain visualizations and explanations for a sample
of complexes that include the Golgi Transport complex (PubMed id: 11703943),
Arp 2/3 Protein complex (PubMed id: 10377407) and Kornberg’s Mediator com-
plex (PubMed id: 15477388). Additionally, we found a set of module proteins that
formed the constituents of RNA polymerase complexes I, II, TII. We also discov-
ered potential novel complexes that matched the novel complexes found by Gavin
et al. Further we also did analysis of our predicted complexes to validate the core-
attachment structures (all details in supplementary materials).

4. Conclusions and future work

Considering the immense popularity of the Markov Clustering (MCL) algorithm in
clustering PPI networks, we have developed the MCL-CA approach to predict yeast

d Cytoscape: http://wuw.cytoscape.org/
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protein complexes with better accuracies.

There is a lot of scope for further improvements and research in this direction.
The proposed ranking method tends to favor larger complexes. Better statistical
measures to rank complexes can be developed that reflect vital biological measures.
Further, we have shown results only on unweighted PPI datasets. It will be worth-
while to see the results on weighted PPI datasets. Together with these weights, it will
be interesting to develop new ranking measures for the complexes. We also intend
to analyse the performance of MCL-CA using a larger benchmark set of manually
curated complexes. Finally, these techniques are based on core-attachment struc-
tures found in yeast complexes. It will be interesting to check by computational
means if complexes from other organisms display these structures even before wet
lab experiments are performed.
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