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Next generation sequencing technologies enable rapid, large-scale production of sequence
data sets. Unfortunately these technologies also have a non-neglible sequencing error rate,
which biases their outputs by introducing false reads and reducing the quantity of the
real reads. Although methods developed for SAGE data can reduce these false counts

to a considerable degree, until now they have not been implemented in a scalable way.
Recently, a program named FREC has been developed to address this problem for next
generation sequencing data.

In this paper, we introduce RECOUNT, our implementation of an Expectation Max-

imization algorithm for tag count correction and compare it to FREC. Using both the
reference genome and simulated data, we find that RECOUNT performs as well or better
than FREC, while using much less memory (e.g. 5GB vs. 75GB). Furthermore, we report

the first analysis of tag count correction with real data in the context of gene expression
analysis. Our results show that tag count correction not only increases the number of
mappable tags, but can make a real difference in the biological interpretation of next
generation sequencing data. RECOUNT is an open-source C++ program available at

http://seq.cbrc.jp/recount.

Keywords: next generation sequencing, transcriptomics, tag count correction, sequence
analysis

1. Introduction

In recent years, DNA sequencing technology has leapt forward with the advent of
next-generation sequencing technologies such as Illumina GA (aka Solexa), Roche’s
454, and SOLiD [9]. For example in the field of transcriptome analysis, by obtaining
tens of millions of short reads from transcript populations of interest, new sequenc-
ing technology is enabling transcripts to be measured with unprecented accuracy
and resolution [8, 12, 19]. Similarly in the area of metagenomics, the output of
these technologies allows us to directly examine the molecular blueprints of micro-
bial communities and determine their genetic variation [15].



September 4, 2009 17:6 WSPC - Proceedings Trim Size: 9.75in x 6.5in 04-Wijaya

2 E. Wijaya et al.

Nevertheless, the high-throughput reads from these next-generation sequencing
technologies contain substantial bias, because of the error rates that range from 0.3%
at the beginning of reads to 3.8% - 25% at the end of reads [6, 18]. These errors
introduce bias by reducing the quantities of the real reads and introducing false
reads. We observed the effect of these errors on Solexa mouse data and found that
more than 46% of the reads failed to map to the genome. These errors confound the
measurement of real, but lowly expressed transcripts, and therefore can significantly
reduce the quality of the conclusions which can be drawn from the data.

Many methods have been developed for SAGE read count correction. Some filter
tags by forcing them to match known transcripts [2] or have a minimal quality and
abundance [11]. Another attempted to join low-abundance tags to their neighboring
(one-mismatch) tags [23]. Akmaev [1] extended this approach with a neighbor tag
pair based procedure to discard spurious tags. Colinge and Feger [4] suggested a
method to solve for the set of read counts whose expected observed counts (after
sequence errors) equals the given observed counts. Finally Beißbarth et.al [3] intro-
duced an Expectation-Maximization (EM) algorithm to find a set of estimated true
read counts with maximal likelihood given the observed counts.

Unfortunately the software tools designed for SAGE cannot be directly applied
to next generation sequencer data. This is due to differences in the details and
amount of the generated data. For example: 1) Solexa reads have length greater
than 30bp while SAGE tags are usually either 10 or 17 bp long, 2) the number of
reads generated by Solexa typically is 100 fold greater than SAGE.

Recently Qu, et.al [18] proposed a clustering approach (FREC) to reduce the
sequencing error in next generation sequencing data. The method uses an itera-
tive procedure to cluster the reads and performs a sequencing error test for each
cluster to assess the reads’ membership to the cluster. The estimated counts of the
representative reads is inferred from the total frequency of reads inside the cluster.

In this article we describe a tool – RECOUNT – designed especially to correct
biases resulting from sequencing error in Solexa’s reads. It adopts the EM algorithm
of [3] to estimate the true counts/expression of the reads. Unlike FREC, RECOUNT
exhaustively estimates the true counts for all the reads without pruning reads with
low abundance. Although the running time is almost twice that of FREC, RE-
COUNT is much more memory efficient, using 14 times less memory than FREC.
It also yields a higher percentage of mapped reads than FREC on some datasets
and significantly outperforms FREC in making fewer large tag count errors when
applied to simulated datasets.

We have applied RECOUNT to novel Solexa reads from mouse embryo, Beta
vulgaris transcriptomes, 5’-end SAGE and bacterial metagenomics reads. In total
they comprise more than 117 million reads. Evaluation in these datasets shows that
RECOUNT increases the number of mapped tags by up to 13.85% and application
on metagenomic data exhibits RECOUNT’s ability to reduce the number of falsely
mapped reads to the wrong genome. Furthermore we demonstrate that RECOUNT
can prevent reporting false but apparently significant read count changes in tags
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which map to annotated genes and pseudogenes in the mouse genome. We also
identify the particular sequencing errors which cause the false observed counts in
these cases.

2. Materials and Methods

2.1. Data

In our experiments we use four data sets: 1) transcriptome data from mouse embryo
from 4 time points - day 7, 11, 15 and 17 (details of these data sets can be found in
the Supplementary Material). 2) Beta vulgaris transcriptome data. It contains reads
with length 27bp. It consists of more than 2 million reads [6]. 3) 5’-end SAGE data
from D. melanogaster. It consists of more than 8 million reads of length 25bp [18].
4) Metagenomic data. We analyzed metagenomic data from [15], which is known
to come from the genome of E. coli strain K12-MG1655. It contains more than 6.5
million reads of length 36.

2.2. Definitions

For clarity, we start by formally defining a few terms. A tag is the DNA sequence of
a sequencing read. In this study, within any dataset all tags are of the same fixed
length. A true tag is the sequence of the actual DNA, while the observed tag is the
output of the sequencer. The neighborhood of a tag t is the set of tags which have
a non-neglible probability of being observed when t is the true tag or vice versa.
A typical working definition of the neighborhood of tag t is all of the tags within
Hamming distance 1 of t. A library is the multiset of tag sequences observed from
one biological sample, e.g. a day 11 mouse embryo.

2.3. Conversion from Solexa to Phred Error Probability

The quality score of a base call is usually described in terms of error probability,
namely the probability that a given base call is wrong [7]. We convert the Solexa
quality scores to the more standard Phred score.

Let sQ be the Solexa quality score, pQ be the Phred quality score and ε be the
error probability of a base in a given read. The Phred quality score is described
as: pQ = −10 · log(ε)/log(10). We use the following formula for converting Solexa
quality scores into Phred quality scores:

pQ =
10 · log(1 + 10

sQ
10 )

log(10)

For each unique tag sequence t and each position p in t, RECOUNT adopts
the average of the error probability over all reads of t as the error probability for
position p of t. When computing tag neighbors, we assume that each of the 3 possible
substitutions at a given position are equally likely. Thus the error probabilities
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are tag and position specific but not base specific. To speed the calculation, our
implementation ignores the possibility of more than d errors in any tag, where d is
typically set to 1 or 2.

2.4. Statistical Model

The error rates described in the previous section denote the probability that a true
read i generates an observed read j as αij . Let N be the total number of unique
reads in a library. The number of observed counts of a read is denoted as ni and
the true count is denoted as mi, for i = 0, . . . , N .

In forming a probability model, we assume the true read counts follow a Poisson
distribution, namely given a true proportion pj of a tag j, the true count is mj with
probability:

e−pjλ(pjλ)mj

mj !

for a fixed λ.
We adopt the Expectation Maximization algorithm [3, 5] to calculate the true

counts given the observed counts and sequencing error rate estimates. The param-
eters we want to estimate are pj and λ. The loglikelihood function is given by:

λ +
∑

j=1,··· ,N

m̂j log(pjλ)

The details of the EM algorithm are as follows:

(1) E-step: Compute the likelihood and expected count of a tag j given by:

m̂j =
∑

i=1,...,N

(
αijpj∑

k=1,...,N αikpk

)

(2) M-step: Maximize the likelihood of the complete data given the expected values
and re-calculate new estimates for the parameters: λ̂ =

∑
k=1,...,N m̂k and p̂j =

m̂j/n, where n is the total read counts in the library.

We iterate these steps until the parameters converge. We initialize the expected
values m̂j with the observed count of read j.

2.5. Tag Correction Evaluation

We use genome mapping to evaluate the effectiveness of tag map correction. The
assumption is that tags which map perfectly to the reference genome are far more
likely to be correct than other tags. Note that RECOUNT corrects tags solely on
the basis of the library, without the use of a reference genome.
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The genome mapping experiments carried in the next sections were done pri-
marily using LAST. LAST is a general-purpose local alignment tool, broadly similar
to BLAST, but much more efficient for genome-scale datasets (http://last.cbrc.
jp/). Although it is not specialized for tag mapping, it fulfilled our needs and we
understand it well. In Supplementary Material we describe in detail the usage of
LAST in our experiments.

3. Results

3.1. Effects of RECOUNT Error Correction on the Number of

Genome Mappable Tags

First we analyze the performance of RECOUNT by examining the effect of read
count correction on the number of tags which can be mapped to the reference
genome. In this experiment we mapped the four mouse embryonic transcriptomes
and B. vulgaris libraries using LAST a.

Figure 1 shows the number of mapped reads before and after applying RE-
COUNT or FREC b on the results. In this experiment RECOUNT was run with
1-Hamming distance neighborhoods c. For each library, the results from both map-
ping tools showed a substantial increase of mapped reads. On average RECOUNT
increases the number of mapped reads by 13.85% whereas FREC does so by 11.55%.
For the B. vulgaris and D. melanogaster datasets on average RECOUNT increases
the number of mapped tags by 4.75% and FREC by 3.98%.
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Fig. 1. Effect of RECOUNT error correction on the number of genome mappable reads. We also

compare the performance of RECOUNT and FREC on A) mouse embryo and B) B. vulgaris and
D. melanogaster (5’SAGE).

aMapping on D. Melanogaster was done using ELAND as provided by Qu, et.al [18].
bWe run FREC without using the adjusted quality value option. Hence the comparison between

FREC and RECOUNT is based on the same error model.
cExperimental results on a small dataset (B. vulgaris) using 2-Hamming neighborhoods can be

found in Supplementary Material.
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Observe that although the performance of the two approaches is comparable,
the advantage of RECOUNT over FREC is more evident when the total number of
reads in the library increases (e. g. day 7, 15 and 17).

3.2. Hamming Distance of Tags to the Genome

In previous section, we used a heuristic mapping scheme that allows a few mis-
matches and indels: here we investigate genome matches in terms of Hamming
distance.

We used LAST to divide the unique tags from the four mouse libraries into
four categories (0, 1, 2, and ≥ 3) based on their Hamming distance to their best
match in the genome. Figure 2A shows the changes of read counts before and after
we apply RECOUNT. Notice the increase in read counts of perfectly matched tags
(Hamming distance 0) after RECOUNT. Also, we see a significant decrease in the
number of reads mapped with Hamming distance 1, 2 and ≥ 3 where the counts after
RECOUNT become lower than before RECOUNT. This is because these counts
have been carried over to the counts of reads with Hamming distance 0. Note that
for all four cases the number of mappable tags given by FREC is also lower than
RECOUNT. One of the advantage of RECOUNT is that total number of read counts
before and after RECOUNT is applied are the same, however this is not the case
for FREC.

!"

#"

$"

%"

&"

'"

("

)"

*"

!"
#$
%&

!$
#'
%&

!'
#(
%&

!(
#$
)%
&

!$
)#
'$
%&

!'
$#
*'
%&

!*
'#
$+
(%
&

!$
+(
#+
))
%&

!+
))
#)
$$
%&

!)
$$
#$
"+
'%
&

!$
"+
'#
+"
,(
%&

!+
",
(#
,"
-)
%&

!,
"-
)#
.$
-$
%&

!.
$-
$#
$*
'.
'%
&

!$
*'
.'
#'
+(
*(
%&

!'
+(
*(
#*
))
')
%&

!*
))
')
#$
'$
"(
$%
&

!$
'$
"(
$#
+*
+$
,'
%&

!+
*+
$,
'#
)+
,+
.(
%&

!)
+,
+.
(#
$"
,.
)(
)%
&

/0
1
$
"
&2
3
45
6
7
5
8
9:
&0
;&
7
8
<6
7
5
&=
>
1
?%
&

@078=&A8=54B>/?&

+,-./,"0123 456"

78,/"0123 456"

/0
1
$
"
&2
3
45
6
7
5
8
9:
&0
;&
7
8
<6
7
5
&=
>
1
?%
&

!!"#$%

&!"'&%

("$$%

'("!)%

(&"''%

*"#$%

'"+!%

,")+%

)$")*%

()"(!%

$"$)%

!"$&%

'!"+!%

#%

&#%

)#%

'#%

+#%

!#%

(#%

,#%

#% &% )% -.'% /0123454%

!
"
#
$
%&
'
(
)
*+
%,
-
./
/.
'
)
0%

1#--.)2%3 .+*#)4"%

657895%:89951;8<%

=>59%?@/:%

=>59%@/:A BCD%

A B

Fig. 2. A) RECOUNT reduced the number of mapped reads with mismatches and increased the
count of perfectly matching reads. B) Change in count frequencies before and after RECOUNT.

A histogram showing the number of unique tag sequences with read counts in each range, before
and after applying RECOUNT is shown.

We also examined the frequency of the read counts before and after using RE-
COUNT on the four mouse libraries. We contend that if RECOUNT is effective,
we should expect to see the number of unique tags with large counts increase and
those with small counts decrease. This follows from the fact that tags with high
read counts cannot be explained solely by random sequencing errors and thus tags
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with high counts are likely to be real. Figure 2B shows the histogram of read counts
before and after RECOUNT was applied. As expected, it shows that the frequency
of large counts increases after the correction by absorbing counts from (apparently
erroneous) small-count tags.

3.3. Evaluation on a Simulated Data Set

Evaluation based on the number of mapped tags may not give a full picture of the
performance of RECOUNT. To further assess the effectiveness of RECOUNT we
created a simulated data set in which we know in advance the number of true reads
for each tag.

We constructed a pair of data sets: a pre-simulated and post-simulated library
(refer to Supplementary Material for details). The pre-simulated library constitutes
a library in which the tag count are true. We apply RECOUNT and FREC on the
post-simulated library. The estimated counts from the post-simulated library are
considered as predicted counts. The performance of the error correction tool then is
measured based on the difference between the true counts and the predicted counts.
Hence the lower the difference the better the performance.

Figure 3A below shows the frequency of tags based on the absolute difference. In
general RECOUNT produces fewer tags than FREC with high absolute difference,
and more tags with low absolute difference. For the tags with absolute difference
[0,3) the total number of tags given by RECOUNT is 1.03 times more than FREC.
For the tags with absolute difference [3,511) on average RECOUNT gives 4.47 times
fewer tags than FREC. The most significant difference in performance happens in
the range [7,15) where RECOUNT gives 6.69 times fewer tags than FREC.
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Fig. 3. A) Error correction performance on a simulated data set. B) Memory usage and running
time of RECOUNT and FREC.
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3.4. Memory Usage and Running Time Comparison

One of the crucial aspects in analysis of next generation sequencing data is the
memory usage of the software. Since the data set sizes are growing much faster
than computer memory sizes, there is a need for a tool that can effectively handle
the massive output of the sequencer.

We compare the memory usage of RECOUNT and FREC using two subsets of
mouse embryo data. The subsets contain 1MB and 5MB reads. Figure 3B shows
that although on average RECOUNT is 1.35 times slower than FREC, the memory
usage is 14.71 times less than FREC. When applied to the largest mouse embryo
library (day 17), RECOUNT needs approximately 5GB of memory whereas FREC
requires approximately 75GB.

3.5. Analysis of Mapped Tags with Large Read Count Corrections

Because of sequencing error, non-existing reads can be observed, and the read counts
of true tags can be substantially altered. In the mouse embryonic data set we set
out to investigate if we could detect such artifacts and determine if the correction
done by RECOUNT affects the expression of known genes. For this purpose, for all
of the mapped tags in the four mouse libraries, we found the corresponding mouse
genes based on annotation in AceView [22].

We considered a tag to correspond to a gene if it mapped to within 500bp
upstream or downstream from the transcription start site (TSS). For these experi-
ments we allowed up to two mismatches when mapping to the genome. We compiled
a list of tags from all the libraries where the read count change is greater than 50
fold after correction. Table 1 reveals that the read count of tags which correspond
to Hba, Dmkn, and Fabp1 have been substantially altered because of sequencing
errors. In the observed data, the counts of these reads is lowered and the counts
of their neighboring tags raised, both at substantial rates. As mentioned elsewhere
in this manuscript, “neighboring tag” refers to the Hamming distance of the tags,
not their genomic position, however note that in three of the four cases shown here,
the neighboring tag shown maps to the same gene. In this case, the uncorrected
data would not affect the estimated expression of the gene. The fourth example in
Table 1 shows a case in which the neighboring tag maps to a different gene. The
count of a read that corresponds to EG408196 was reduced to zero, whereas its
neighboring read that corresponds to Stfa1 increased.

All of the genes mentioned in this section are potentially important: Hba ex-
pression was found to change in early stages of mouse embryo development [24],
Dmkn is a gene primarily expressed in skin epithelial tissues but also expressed in
other tissues [14], Fabp1 is known to affect the growth and differentiation of mouse
embryonic stem cells [21], and Stfa1 was reported to be responsible for controlling
susceptibility to autoimmune disease [10].
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Table 1. Artifact of sequencing error on known genes, obtained from the
pooled 4 mouse embryo data. The underlined nucleotides are the bases of the

neighboring tags where the mismatch happened.

Obs. Est. True
Tags Count Count Genes

ACTTCTGATTCTGACAGACTCAGGAAGAAATCAT 2.20e3 0 Hba
ACTTCTGATTCTGACAGACTCAGGAAGAAACCAT 4.44e6 5.0e6 Hba

GGAAAGCAGGGAAGTCTGGGAACAGAGAGAGAAC 0.20e3 0 Dmkn
GGAAAGCAGGGAAGTCTGGGAACAGAGAGAGAAG 0.12e6 0.14e6 Dmkn

AGGCAGAGCTGTTGTGGTCAGCTGTAGAAAGGAA 0.10e3 0 Fabp1
AGGCAGAGCTGTTGTGGTCAGCTGTGGAAAGGAA 0.72e6 0.86e6 Fabp1

ATCATTTCTTCTCAGTGTCCAAGCCAGCAAGGAA 130 0 EG408196

ATCATTTCTTCTCAGTGTCCAAGCCAGCAAAGAA 56,266 68,756 Stfa1

3.6. Changes of Expression for Known Genes

RECOUNT clearly makes a difference at the indivual tag level. To investigate if
it can also make a practical difference in analysis at the gene level, we used the
tags to measure gene expression as in the previous section, by counting the overall
number of read counts that mapped to within 500bp of the TSS of each gene.
Using the four libraries of mouse embryonic transcriptomes, we identified genes
with significant change in expression before and after read count correction by
RECOUNT. Table 2 shows the list of highly affected genes. Observe that large
gene read count reduction happens often with pseudogenes (i.e. genes with prefix
”LOC”). This shows that RECOUNT is effective in correcting the expression of
pseudogenes which are known to be unexpressed. We also identified several genes
of interest with reduced expression after read count correction: Mt ATP, a gene
that is responsible for generating ATP synthase in mitochondria [13], SUI1, a gene
that suppress intitiator codon mutations [17], and Upf3a, a gene that encodes a
protein that is part of a post-splicing multiprotein complex involved in mRNA
nuclear export and mRNA surveillance [20]. (Supplementary Material depicts the
choromosomal view of gene expression change after RECOUNT is applied).

3.7. Reduction of Falsely Mapped Metagenomic Reads to Wrong

Strains

One of the primary challenges with regard to metagenomics is how to deal with large
tag libraries from diverse, often uncharacterized, genomes. Despite the enormous
amount of sequence data that has been generated and analyzed in the past few years,
publicly available software to help the analysis of metagenomic data is remarkably
scarce [16].

We analyzed metagenomic data from [15], which is known to come from the K12-
MG1655 strain of E. coli. We further mapped the data to 6 closely related genomes,
namely: E. fergusonii, E. coli O127:H6 E2348/69, E. coli 536, E. coli 55989, E.
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Fig. 4. RECOUNT reduced the number of reads misassigned to the wrong genome.

coli APEC O1, and E. coli s88.
To examine if RECOUNT can reduce falsely mapped tags to the wrong strains,

we looked at the number of reads that match E. coli K12-MG1655 with Hamming
distance ≥ 1 but perfectly match another genome. Such mapping errors are relevant
when judging if reads come from virulent microbes or closely-related but harmless
microbes, for instance. Figure 4 showed that RECOUNT can reduce the number of
falsely mapped reads in these wrong strains of E. coli by 3.29% in total.

4. Conclusion

In this article we have introduced a tool for correcting sequencing errors in next
generation sequencing. We demonstrated the effectiveness of RECOUNT on several
real datasets, showing that it can effectively decrease counts of false reads and in-
crease the counts of true reads, as reflected by the significant increase of mapped
tags. Compared with the recently published tool FREC [18], RECOUNT shows
similar or better performance than FREC in terms of the number of genome map-
pable reads produced after read count correction. Application on simulated data set
shows that RECOUNT significantly outperforms FREC in making fewer large tag
count errors.

We also showed the effectiveness of RECOUNT in addressing real biological
problems. For example the application of RECOUNT can have significant effects
not only at the tag level, but also when tags are aggregated for gene level expres-
sion analysis. Examination of metagenomic data further shows RECOUNT does
indeed reduce the number of reads falsely mapped to the wrong genomes; albeit
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only slightly.
RECOUNT is scalable for Solexa reads. The running time for estimating the

true counts from a library with 21 million Solexa reads is 4 hours on a 2.66GHz
64bit 8GB RAM Linux workstation. We believe that as next generation sequencers
continue to improve they will generate more data. There is a great need for tools
that can help biologists to interpret the transcriptomic data more accurately and
effectively.
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