Improved Algorithms for Enumerating Tree-like Chemical Graphs with Given Path Frequency

Yusuke Ishida* Liang Zhao Hiroshi Nagamochi
Graduate School of Informatics, Kyoto University, Japan
Tatsuya Akutsu
Institute for Chemical Research, Kyoto University, Japan

Outline

1. Problem Formulation
2. Canonical Representation and Family tree
3. Algorithm (Branch and Bound)

- Detachment-cut

4. Experimental Results for the first formulation
5. H-less Single-bond Formulation

- Hydrogen-cut

6. Experimental Results for the second formulation
7. Conclusions

Background

chemical compounds
given partial structures
applications:

- structure determination using mass-spectrum
- drug design

Definition

A feature vector $f_{k}(G)$:
\#occurrences of each vertex-labeled path of length $0,1, \ldots, K$

a chemical compound G
$f_{3}(G)(K=3)$

Enumerating Chemical Multitree Problem

Input	Output
	 all Σ-labeled multitrees satisfying the feature vector constraint and the valence constraint

Previous Work

- Aringhieri et al. [4OR, 2003]
- designed two algorithms to generate all alkane isomers.
- Fujiwara et al. [J. Chem. Inf. Model., 2008]
- proposed a branch and bound algorithm for chemical multitree problem.
- gave H-less single-bond formulation of chemical multitree problem and their algorithm can be also applied to it.

Family tree

- Add a vertex to $T=\phi$.
- Repeatedly attach a new vertex to T based on canonical representation.

Bounding Operations

For a current tree T,
(1)feature-vector-cut
test whether $f_{k}(T) \leqq g$ holds. the feature vector of T the input

(2)bond-cut
 \#edges incident to v in T the valence of the label of v

(3)detachment-cut

test whether T can be extended to multitrees T satisfying degree constraint.

Detachment-cut

Test whether T can be extended to multitrees satisfying degree constraint.

input	
H	13
O	2
N	$\mathbf{1}$
C	$\mathbf{6}$
NH	2
OH	1
CH	10
NC	1
CO	$\mathbf{2}$
CC	5

shrink
residual

H	4
O	1
N	1
C	3
A	1
NH	1
CH	3
CO	1
CC	1
NA	1
CA	2

a current tree \bar{T}
$1=2$
(A)

Detachment-cut

Test whether G has a connected and loopless ρ-detachment.

$$
\begin{aligned}
& 4+3+2=9 \quad 8 \quad \text { for } v= \\
& \text { (1) } \sum \rho\left(v^{i}\right) \geqq \operatorname{deg}(v ; G) \quad \forall v \in V \\
& 1 \leqq i \leqq \mathrm{r}(\mathrm{v}) \\
& \text { \#edges incident to } v \text { in } G \\
& \text { condition for degree constraint } \\
& \rho(H)=(1,1,1,1) \\
& \rho(O)=(2) \\
& \rho(N)=(2) \\
& \rho(C)=(4,3,2) \\
& \rho(A)=(3)
\end{aligned}
$$

\#edges joining X and V \#connected components in $G-X$
condition for connectivity
$r(H)=4$
$r(O)=1$
$r(N)=1$
$r(C)=3$
$r(A)=1$

Experiment

- Comparing the running time of our algorithm with Fujiwara et al.'s [2008]
- Instances from KEGG LIGAND database
(Replacing each benzene ring by a virtual atom of valence 6)
- Pentium 3 3.00GHz
- T.O. : time over 1800 (sec)

Formula \#atoms		Fujiwara et al.'s algorithm		our algorithm	
	K	CPU time (sec)	\#solutions	CPU time (sec)	\#solutions
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$	1	T.O.	N.F.	158.23	570,773
37	2	3.11	9	0.48	9
	3	3.25	2	0.30	2
$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$	1	T.O.	N.F.	109.27	73,711
43	2	50.55	55	1.40	55
	3	16.78	1	0.61	1
$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$	1	T.O.	N.F.	500.78	70,170
46	2	51.72	16	3.51	16
	3	4.26	2	0.32	2
$\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4}$	1	T.O.	N.F.	T.O.	N.F.
61	2	T.O.	N.F.	318.68	1,198
	3	T.O.	N.F.	188.13	8

H-less Single-bond Formulation [Fujiwara et al. 2008]

Hydrogen-cut

$$
h^{*}(\ell): \text { sum of \#hydrogens adjacent }
$$ to each atom of label ℓ.

(H)

Hydrogen-cut

$h(\ell, T)$: sum of \#hydrogens that must be adjacent to each atom of label ℓ in a current tree T If $h(\ell ; T)>h^{*}(\ell)$ holds for a label ℓ, discard T.

Assume $h^{*}(\mathrm{C})=7$.

Experimental Results for the second formulation

Formula \#atoms		Fujiwara et al.'s algorithm		our algorithm	
	K	CPU time (sec)	\#solutions	CPU time (sec)	\#solutions
$\begin{array}{r} \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \\ 19 \end{array}$	1	222.29	70,170	9.03	70,170
	2	0.11	16	0.02	16
	3	0.09	2	0.01	2
$\begin{array}{r} \mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4} \\ 25 \end{array}$	1	T.O.	5,305,243	T.O.	60,257,365
	2	23.36	1,198	8.10	1,198
	3	15.87	8	5.66	8
$\begin{array}{r} \mathrm{C}_{19} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{P} \\ 29 \end{array}$	2	T.O.	161	1543.37	2,520
	3	184.54	1	45.36	1
	4	11.86	1	3.60	1
$\begin{array}{r} \mathrm{C}_{21} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{P} \\ 33 \end{array}$	2	T.O.	77	T.O.	1,736
	3	T.O.	11	438.19	13
	4	118.48	11	25.65	11

Conclusions

- We proposed a branch and bound algorithm with two new bounding operations.
- For the first formulation, we can solve the problem with about 25 non-hydrogen atoms for $\mathrm{K} \geqq 2$.
- For the second formulation, we can solve the problem with about 30 non-hydrogen atoms for $\mathrm{K} \geqq 2$.

Future Work

- Treat more general graphs (e.g., outerplanar graphs).
- Use other graph structures for representing partial structures of input.

\square

Definition

A feature vector $f_{K}(G)$:
\#occurrences of each vertex-labeled path of length $0,1, \ldots, K$
$f_{1}(G)$

H	$\mathbf{4}$
O	$\mathbf{2}$
C	$\mathbf{2}$
HH	$\mathbf{0}$
OH	$\mathbf{1}$
CH	$\mathbf{3}$
HO	$\mathbf{1}$
OO	$\mathbf{0}$
CO	$\mathbf{2}$
HC	$\mathbf{3}$
OC	$\mathbf{2}$
CC	$\mathbf{2}$

a chemical compound G

Feature Vector $(K=1)$ and ρ-detachment

$$
\Sigma=\{H, O, C\}
$$

$\operatorname{val}(H)=1$
$\operatorname{val}(O)=2$
$\operatorname{val}(\mathrm{C})=4$

H	4
O	2
C	2
HH	$\mathbf{0}$
OH	$\mathbf{1}$
CH	$\mathbf{3}$
HO	$\mathbf{1}$
OO	$\mathbf{0}$
CO	$\mathbf{2}$
HC	$\mathbf{3}$
OC	$\mathbf{2}$
CC	$\mathbf{2}$

$\mathrm{r}(\mathrm{H})=4$
$\mathrm{r}(\mathrm{O})=2$
$\mathrm{r}(\mathrm{C})=2$
$\rho(\mathrm{H})=(1,1,1,1)$
$\rho(\mathrm{O})=(2,2)$
$\rho(\mathrm{C})=(4,4)$

Detachment-cut

Test whether T will generate trees satisfying given constraint.

input
H $\mathbf{1 3}$ O $\mathbf{2}$ N $\mathbf{1}$ C $\mathbf{6}$ NH $\mathbf{2}$ OH $\mathbf{1}$ CH $\mathbf{1 0}$ NC $\mathbf{1}$ CO $\mathbf{2}$ CC $\mathbf{5}$

residual
Which vertices are counted as "residual"?

New vertices can be attached

H	4+
O	$1+$
N	$0+$
C	$1+$
NH	1
CH	3
CO	1
CC	1

(H) H(H) H (H) (H) a current tree T

Detachment-cut

Test whether T will generate trees satisfying given constraint.

Detachment-cut

Test whether (1) and (2) holds.
necessary conditions for " G has a connected and loopless ρ-detachment [Nagamochi 2006]

condition for connectivity
$4+3+2=9 \quad 8 \quad$ for $v=C$
(2) $\Sigma_{1 \leq i \leq r(v)} \rho_{i}^{v} \geq \operatorname{deg}(v ; G) \quad \forall v \in V$
\#edges incident to v in G
condition for degree specification
$\rho(H)=(1,1,1,1) r(H)=4$ $\rho(O)=(2) \quad r(O)=1$ $\rho(\mathbb{N})=(2) \quad r(N)=1$ $\rho(C)=(4,3,2) \quad r(C)=3$ $\rho(A)=(3) \quad r(A)=1$

Detachment-cut

Consider the degree constraint $\rho(v i)$ of each vertex $v i$ for $1 \leqq i \leqq \mathrm{r}(v)$.

For a vertex $v^{i} \notin T, \rho\left(v^{i}\right)=\operatorname{val}\left(\ell\left(v^{i}\right)\right)$.
For a vertex $v^{i} \in T$,

$$
\begin{equation*}
\rho\left(v^{i}\right)=\operatorname{val}\left(\ell\left(v^{i}\right)\right)-\operatorname{deg}\left(v^{i} ; T\right)+1 . \tag{A}
\end{equation*}
$$

$$
\begin{array}{ll}
\rho(H)=(1,1,1,1) & r(H)=4 \\
\rho(O)=(2) & r(O)=1 \\
\rho(N)=(2) & r(N)=1 \\
\rho(C)=(4,3,2) & r(C)=3 \\
\rho(A)=(3) & r(A)=1
\end{array}
$$

Test whether there exists multitrees satisfying the degree constraint by considering a "detachment" of G.

Detachment-cut

Test whether T can be extended multitrees satisfying degree constraint.

