A New Model of Multi-Marker Correlation for Genome-Wide Tag SNP Selection

Wei-Bung Wang Tao Jiang

Nat De a	National Taiwan University Department of Computer Science and Information Engineering							
E	Examples of Tag SNPs							
	Haplotype pattern							
SNP loci	$\begin{bmatrix} P_1 & P_2 & P_3 & P_4 \\ S_1 & & & \\ S_2 & & & \\ S_3 & & & \\ S_4 & & & \\ S_5 & & & \\ S_6 & & & \\ S_7 & & & \\ S_8 & & & \\ S_{10} & & \\ S_{11} & & \\ S_{12} & & \\ \end{bmatrix}$ In fact, it is not necessary to genotype all SNPs. SNPs S_3, S_4 , and S_5 can form a set of tag SNPs. $\begin{bmatrix} P_1 & P_2 & P_3 & P_4 \\ S_3 & & \\ S_5 & & \\ S_5 & & \\ S_6 & & \\ S_7 & & \\ S_8 & & \\ S_9 & & \\ S_1 & &$							

An Exa	ample	е			ſ	Related Wo	ork
Individ ual	SNP_1	SNP ₂	SNP ₃	SNP ₄	SNP ₅	SNP ₆	
1	А	G	Α	С	G	Т	
2	Т	G	С	С	G	С	
3	А	A	Α	Т	Α	Т	
4	Т	G	С	Т	Α	С	
5	Т	A	С	С	G	С	
	A T		A C			T C	

				Our Approach
Ou	r Ap	proa	ach	
	snp_1	snp ₂	snp ₃	 We introduce now
haplotype ₁	Α	С	G	
haplotype ₂	A	Т	Т	
haplotype ₃	Α	С	G	: AC AC
haplotype ₄	Α	Т	Т	T 0.7 0 0.7
haplotype ₅	С	Т	Т	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
haplotype ₆	Α	Т	Т	
haplotype ₇	С	Т	G	←o Only one mistake
haplotype ₈	С	С	Т	
haplotype ₉	С	С	Т	
haplotype ₁₀	C	Т	Т	
	A els	C se	G T	

					Our Approach
Ou	r Ap	proa	ach		
	snp_1	snp ₂	snp ₃	snp ₄	(snn snn) vs snn
haplotype ₁	Α	C	G	Α	$(311p_1, 311p_2)$ (3. $311p_3$
haplotype ₂	A	Т	Т	С	AC, G
haplotype ₃	Α	C	G	Α	: AC , T
haplotype ₄	Α	Т	Т	С	
haplotype ₅	С	Т	Т	Α	
haplotype ₆	Α	Т	Т	С	• $(snp_1, snp_2) vs. snp_4$
haplotype ₇	С	Т	G	Α	(AC CT), A
haplotype ₈	С	С	Т	С	(AC CT) C
haplotype ₉	С	С	Т	С	. (AC_CT), C
$haplotype_{10}$	С	Т	Т	Α	

					Result
Vs. Single	-Mark	ker Ap	proad	ch	
Region	ENm010	ENm013	ENm014	ENr112	ENr11
$ \# \text{ SNP} \\ r^2 > 0.8 $	459	731	874	868	1035
LRTag	119	88	134	148	133
2-marker MultiTag	75	57	80	87	75
2-marker MMTagger	72	52	78	85	73
3-marker MultiTag	68	53	75	78	64
3-marker MMTagger	62	48	75	68	59
$r^2 \ge 0.9$					
m LRTag	148	121	172	204	190
2-marker MultiTag	100	76	111	118	122
2-marker MMTagger	92	73	100	109	115
3-marker MultiTag	91	66	102	101	100
3-marker MMTagger $m^2 > 0.05$	79	58	85	81	81
$r^{-} \geq 0.95$	102	148	106	268	947
2 marker MultiTag	192	140	190	208	156
2-marker Muthing 2 marker MMTaggar	117	90	100	1.07	140
2-marker Williagger	120	92	122	141	149
5-marker Multilag	120	03	119	138	140

							Result
N	/MTa	agger	Vs	. Multi	Гад		
		Table 2.	MMT	lagger vs. Mult	tiTag		
Chromosome	# SNP	mode	r^2	program	# SNPs Selected	Time (hours)	Memory (M bytes)
JPT+CHB	28931	2-marker	0.9	MultiTag MMTagger	$9600 \\ 9145$	26hrs 2mins	30 - 35 125
chr19		3-marker	0.95	MultiTag MMTagger	N/A 10032	$>700 \mathrm{hrs}$ $<1 \mathrm{hr}$	$30-35 \\ 657$
JPT+CHB	-CHB 28914 - 21 28914 -	2-marker	0.9	MultiTag MMTagger	$7115 \\ 6766$	42hrs 2mins	30 - 35 187
chr21		3-marker	0.95	MultiTag MMTagger	N/A 7404	$>700 \mathrm{hrs}$ $<1 \mathrm{hr}$	$30 - 35 \\ 1210$
JPT+CHB	-CHB 26595 - r22	2-marker	0.9	MultiTag MMTagger	7557 7221	93hrs 2mins	30–35 183
chr22		3-marker	0.95	MultiTag MMTagger	N/A 7788	>700hrs 3hrs	$30-35 \\ 1216$

