Exploratory simulation of cell ageing using hierarchical models GIW 2008

Hayssam Soueidan

U.Bordeaux, France LaBRI & INRIA project "MAGNOME"

Modeling challenges in Systems Biology

- Why do we care about modeling?
- $\blacktriangleright \rightarrow$ Understanding how systems give rise to emerging behaviour
- Types of models:
 - Stoichiometric flux models
 - Metabolic kinetic models
- Analysis:
 - Metabolic analysis global qualitative
 - Kinetic anaylsis *local quantitative*
- ▶ ★ Klipp *et al*., 2007:
 - Modeling: PowerPoint and Excel
 - Analysis: MatLab

Outline

- Why hierarchical modular modeling ?
- How we do it in BioRica modeling and simulation tool
- Yeast rejuvenation study

Modeling challenges in Systems Biology

- ESF Grand Challenges, NSF Funding Objectives
 - Hierarchical modeling
 - Integrating genome-scale and fine-grained phenomena
- 1. Multiple time-scales
 - Transforming metabolites: fast
 - Synthesizing an enzyme: slow
- → ODE stiff systems (Brenan *et al.*, 1996) fast-scaled reactions are stable, but slow reactions determine the system's trajectory
- 2. Deterministic vs stochastic
 - Excess of metabolites
 - Lack of metabolites

Modeling in BioRica

- Webster's dictionary: "a system is a complex unity formed of many often diverse parts subject to a common plan, serving a common purpose"
 - an electronic circuit
 - nuclear power plant
 - an *S. cerevisiae* cell
- Systems are comprised of specific components (sub-systems) that interact
 - some components' activities occur concurrently (independently)
 - some components' activities are linked in some way
 - system's behaviour mainly defined by interactions of components
- ▶ → two main specificities: **hierarchy** and **composition**

Where we come from

- "System" approaches in industrial engineering (since late 1980's)
 - AltaRica modeling language (1999)
 - Modeling platform
 - textual and graphical modeling interface
 - simulation and verification tools
 - trace analysis
 - Models are compositional and hierarchical
 - behavioral hierarchy
 - architectural hierarchy
- ➤ Well-suited to modeling challenges

Compiling models with BioRica

Language

- Based on AltaRica
 - Industrial-strength
 - Designed for engineers
- Simple declarative and hierarchical language
 - Formal semantics
- Description of both models and properties of models
- (e.g. Teddy onthology)

node Portestateouverture: BOOL;transferee: [0,30];flowapicale:[0,30]:i;basale:[0,30]:o;eventfermeture, transfert;transtrue |- fermeture -> ouverture := ~ouverture;ouverture |- transfert -> transferee := transferee+1;assertbasale = transferee;externlaw<transfert>:Exponential{0.1};law<fermeture>:Exponential{0.01};edonnode Endotheliumstateedhf:[0,30]-

Semantics

- Compositional (Connections, synchronization)
- Generality: High expressivity, captures most existing models
- Mathematically sound and operational
- Why do we care ?
 Coherent composition with almost any
 calculation (ex: MatLab)

Simulation

- Automatic translation of models into C++ code
 Simulator architecture open for customization
 - and extension
 - Efficient
 - Parameterized
 - Subject to profiling and debugging tools (GDB, Shark etc.)

Simulation in BioRica

Algorithm 1 General simulation schema

Require: current state S, current simulation time t, maximal simulation time t_{max}

- 1: S' = S
- 2: while $\operatorname{alive}(S, S') = 1$ and $t < t_{\max} \operatorname{do}$

$$3: \quad S' = S$$

- 4: $t, S = advance_numerical_integration()$
- 5: **if** $e = \text{discrete_events}()$ **then**

6:
$$t = get_discrete_event_time()$$

- 7: $store_event(e)$
- 8: S = update(S, e)
- 9: reset_numerical_integrator()
- 10: end if
- 11: store_state(S)
- 12: end while

Simulation in BioRica

Trace database

- Saves simulation results for varying parameters
- Comparative studies
- Simulation time control (replay, pause, reverse, fast forward)
- Randomized decisions can be replayed for different outcomes

Database Browser

Databases

information_schema cellageing MaturingTime batch batchTree datapoint mysgl

semtest test Columns in table: batch

Name	Туре	Nullable	Default	Sear
k1	double	YES	NULL	\square
k2	double	YES	NULL	\square
k3	double	YES	NULL	\square
k4	double	YES	NULL	\square
retention	double	YES	NULL	\square
Pdiv	double	YES	NULL	\square
size	double	YES	NULL	\square
daughter	bit(1)	YES	NULL	\square
imRoot	bit(1)	YES	NULL	\square
fitness	double	YES	NULL	\square
id	int(10) unsigned	NO	NULL	\square

SELECT * FROM batch

Records 1 to 5 Next »

k1	k2	k3	k4	retentio
10000000	0.693147180559945	1.2	0.693147	
10000000	0.693147180559945	1.2	0.693147	
10000000	0.693147180559945	1.2	0.693147	
10000000	0.693147180559945	1.2	0.693147	

Exploration, Visualization, Analysis tool

- Extraction of high level qualitative properties
- Statistical synthesis
- Features extraction by user defined scripts connecting to the database
 - Python
 - Mathematica
 - Tulip
- MySQL

Studying Lifetime, w/ varying k3 from 0.1 -> 2.2

In(4)= ValForK3[k3_] := SQLExecute[SQLSelect["Cell Ageing", ("MaturingTime"), {SQLColumn["MaturingTime.Pint_init"], SQLColumn["MaturingTime.Pdam_init"], SQLColumn["MaturingTime.t"]}, SQLColumn["MaturingTime.k3"] == k3, SortingColumns → None, Distinct → False, Timeout → 30, ShowColumnReadings → True, GetAsStrings → False]];

ListPointPlot3D[Table[[ValForK3[k3][[2;;]]], {k3, 0, 2.2, 0.2}]]

Rejuvenation in a cell ageing model

- Joint work with M. Cvijovic and E. Klipp (MPI)
- Extension of a single-cell model to a structured population
- Hierarchical simulation with dynamic creation
- Automatized large scale exploration of parameter sets (>100 000 simulations)

The Cell Spiral Model of Yeast Aging

How does population remain "immortal"?

- In every daughter cell, the lifespan "clock" is reset to zero
- Each division produces a cell that can divide many more times
- "Old" cells are very rare in a large exponentially growing population $(1/2^{a+1})$

What limits yeast's lifespan?

- Occasionally, daughters of old mothers are born prematurely aged!
- Their lifespan equals the mother's remaining lifespan

- The asymmetry has broken down accompanied by loss of size asymmetry ("symmetric buds")
- The daughters of symmetric buds have normal lifespan
- \rightarrow Symmetric buds have inherited a "senescence factor"...

ODE model description

P - total protein

Pint - intact proteins

Pdam - damaged proteins

Pdiv - treshold for division

 k_1 - limits the system in terms not to have continues expansion in volume $Pdam \rightarrow Pdam \cdot (mother + (1 - mother) \cdot re)$

- k2 represents degradation rate of intact proteins
- k₃ represents damage rate
- k4 represents degradation rate of damaged proteins
- re retention coefficient

daughters - daughter size (25 or 50)

mothers - mother size (50 or 75)

Equations:

 $\frac{dP}{dt} = \frac{k_1}{k_s + Pint + Pdam} - k_2 Pint - k_4 Pdam$ $\frac{dPint}{dt} = \frac{k_1}{k_s + Pint + Pdam} - k_2 Pint - k_3 Pint$ $\frac{dPdam}{dt} = k_3 Pint - k_4 Pdam$

Trigger: P int > Pdiv

Events:

for daughters:

$$P \rightarrow P int \cdot daughter \cdot (1 + re \cdot \frac{Pdam}{P int}) + Pdam \cdot daughter \cdot (1 - re)$$

$$P int \rightarrow P int \cdot daughter \cdot (1 + re \cdot \frac{Pdam}{P int})$$

$$Pdam \rightarrow Pdam \cdot daughter \cdot (1 - re)$$

for mothers:

$$P \rightarrow Pint \cdot mother \cdot (1 - re \cdot \frac{Pdam}{Pint} \cdot \frac{1 - mother}{mother}) + Pdam \cdot (mother + (1 - mother) \cdot re)$$

$$Pint \rightarrow Pint \cdot mother \cdot (1 - re \cdot \frac{Pdam}{Pint} \cdot \frac{1 - mother}{mother})$$

Discrete events: division ($P_{int} > 1500$) and clonal senescence ($\partial P_{int} < 0$) *alive*: immortality, senescence

update: state vars of the mother, statistics; create daughter, add to D and P

Rejuvenation in a cell ageing model

- Mathematica and BioRica
- Maximization of rejuvenation for the whole population
- Three layer approach

Study outline

Calibrate and validate the hierarchical model: 625 simulations

- Complete simuations to depth 4
- Symmetric and asymmetric, k_1 , k_2 and k_4 fixed, k_3 step 0.1 \in [0.1,2.3]

Simulation to depth 30

- Select simulations: #daughters 20-24
- For each cell: in a cell cycle P_{dam} *initial* fand *final*, *generation time*, *date of birth* (arb. time units), *fitness* (#div in 1st time unit)
- $\rightarrow 2^{30}$ cells in parallel, 2^{32} diff. equations

Parameter exploration

- Identify sets of parameters that exibit emerging behaviour
- Ex: #daughters, high rejuvenation value

Pedigree analysis

Rejuvenation

- Asymmetry without retention -

Rejuvenation

- Symmetry without retention -

Exploring lineage viability

Compare whole populations

People

Original model MPI, Berlin Marija Cvijovic, Edda Klipp, Thomas Nyström Experimental work CMB, Goteborg Marija Cvijovic, Thomas Nyström

Hierarchical model Bordeaux Macha Nikolski, David Sherman, Grégoire Sutre

Summary

- Younger siblings born "prematurely old" (Kennedy et. al, 1994)
- Daugterns born early have low damage, and their daughters have normal fitness
- Both asymmetry and retention increase fitness in second generation
- Control: symmetry, no retention
- Exponential increase in generation time for symmetry and retention (Egilmez *et al.*, 1989)
- Linear increase in generation time for asymmetry and no retention (T. Nystrom, work in progress on ΔSir2 mutant)
- Fitness and viability sensitive to k_3