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Background: Gene expressions

Gene expression microarrays 
The associations between genes and samples discovered in gene 
expression microarrays can be used to help the diagnosis of cancers
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Background: Motivation
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Introduction to bi-clustering

Bi-clustering
An unsupervised method that clusters genes and samples simultaneously
Bicluster ―― a subset of genes co-expressed across a subset of 

samples
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Two overlapping biclusters
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Bi-ordering Analysis: Overview

Our approach is based on a protocol for exploring biclusters that exhibit 
statistical, biological and clinical significance

Given an input gene expression data matrix
1. Generate biclusters based on Bi-Ordering Approach (BOA)
2. Merge similar biclusters into “super-biclusters” to identify robust 

modules
3. Evaluation: three statistics as measurements

— Over-representation of histological categories in biclusters
— Gene Ontology (GO) annotations
— Concordance of sample order with various phenotype gradients

4. Biological Interpretation
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Bi-ordering Analysis: Algorithm

Input Gene expression matrix            with        genes and         samples
Standardize data and select pre-defined thresholds and 
Randomly select a submatrix               as initial bicluster
Repeat

1. Update gene scores ,  for 

2. Select a subset of genes 

3. Update sample scores ,  for

4. Select a subset of samples

Until and      are stable   
is a bicluster with ordering and 

*Note: denotes the mean of 
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Bi-ordering Analysis: Super-biclustering

• Multiple biclusters
o Distinct initializations in BOA result in different biclusters in general
o Some of the biclusters differ slightly due to local optima

• Super-biclustering
A hierarchical clustering is applied on ‘biclusters’ to obtain a group of 
super-biclusters (SBC)
o Objects: biclusters
o Distance metric: Jaccard coefficient on genes
o Prototype selection: a single bicluster is selected as the prototype of SBC

Finally, we obtain a small number of distinct biclusters as output
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Bi-ordering Analysis

Heat map of a typical bicluster in gastric cancer
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Bi-ordering Analysis
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Heat map of a typical bicluster in gastric cancer
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Experiments: Gastric cancer

Gastric Cancer dataset
• 7383 genes, 124 samples
• 6 pathological categories, and other clinical annotations

* Malignant score reflects the biological progression of gastric cancer
It is defined by oncologist
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Phenotype Subtype Malignant score 
*Pre-

malignant
Normal 1
Chronic Gastritis (CG) 2
Intestinal Metaplasia 
(IM)

3
Malignant Diffused 4

Intestinal 4
Mixed 4



Experiments: Evaluation metrics

Three evaluation metrics

• Saturation metric on samples 
—— Homogeneity of samples in terms of clinical annotations

• Trend statistics
—— Associations between the sample orders and clinical 
annotations

• Gene Ontology (GO)
—— The abundance of genes for particular pathways
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Experiments: Results
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Heat map of SBC7
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Experiments: Results

The Significance Table of Super-biclusters
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                  p-value       Most significant annotation

SBC Converge MCS
Malignancy 

Score GO GO
SBC1 11 9.4E-04 1.8E-13 5.1E-09 epidermis development
SBC2 188 1.0E-08  7.1E-07 lipid metabolic process
SBC3 2 1.5E-06 5.5E-08 3.2E-32 immune system process
SBC4 96 1.8E-01  2.0E-53 immune system process
SBC5 15 1.1E-18 7.7E-21 1.8E-14 cell cycle process
SBC6 328 3.0E-07 4.9E-08 1.8E-20 multicellular organismal process
SBC7 359 4.0E-14 -5.4E-22 3.2E-22 gen. of precursor metab. & energy
SBC8 1 3.0E-10 -5.2E-08 2.2E-02  lipid metabolic process
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Experiments: Saturation metric

Comparison with existing algorithms in terms of saturation metric
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ISA: J. Ihmels et al., 
Bioinformatics, 2004
Gibbs: Q. Sheng, et al., 
Bioinformatics, 2003
SAMBA: A. Taney et al., 
Bioinformatics, 2002
C&C: Y. Cheng, G. M. 
Church, ISMB, 2000



Experiments: Biological interpretation

Compare with “Distinctive patterns of gene expression of premalignant gastric 
mucosa and gastric cancer”, Alex Boussioutas et al., 2003, Cancer Research.

B: Encoding mitochondrial proteins (CG)
D1-3: Cell proliferation (Intestinal GC)
E&F: Intestinal genes (IM)
H: Inflammation
K: Extra cellular matrix (Diffuse GC)
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         Region in [Bou03] SBC_1 SBC_2 SBC_3 SBC_4 SBC_5 SBC_6 SBC_7 SBC_8
Symbol Annotation No.Genes 41 217 194 158 227 409 515 146

B Mitochondrial 665 0 0 0 0 0 1 416 9
D1-D3 Proliferation 201 0 0 0 0 76 0 0 0

E Intestinal 294 1 81 0 0 0 0 1 44
F Intestinal 157 0 112 0 0 7 1 0 27
G Squamous 37 25 0 0 0 0 0 0 0
H Inflamation 330 7 0 117 135 9 7 0 30
K Extracellular  877 3 0 67 0 74 392 1 0

Experiments: Biological interpretation

Signal transduction pathways predicted to operate in SBC_6 signature-expressing cells 
(via

analysis in Ingenuity Pathway Analysis®). Notice the genes PDGFRB, EGFR, DDR2, AXL 
and LTK

are all tyrosine kinase receptors. Also noteworthy is ITGB1. The integrin and tyrosine 
kinase
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Conclusion

• Developed Bi-Ordering Analysis for gene expression data
• An effective method to find significant patterns and orderings
• Scalability: very efficient on large scale gene expression data

• Evaluation of statistical significance
• SCS and MCS for validating the homogeneity of samples
• Gene Ontology for validating the significance of gene modules
• Trend statistics for validating the concordance between sample 

ordering and clinical annotations
• Biological findings

• The results of gastric cancer are in concordance with previous 
studies

• Some novel findings deserve further investigation
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Future Work

• Super-biclustering
How to choose an appropriate distance metric in super-biclustering to 
detect a robust set of biclusters is an important issue in computational 
point of view

• Data dependency
Verify our approach in more synthetic and real datasets are critical to 
solve the problem of various performance dependent on datasets
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