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Measurably evolving populations (MEPs)

� Rapidly evolving pathogens, e.g., 
.HIV, FIV, Influenza.

� Ancient DNA: so far mostly 
mitochondrial, e.g. 

• Adelie penguins 

• Pleistocene bears

Present timepoint
(n = 5)

Earlier timepoint
(n = 5)

MEP: Any population evolving fast 
enough so that a statistically significant 
accumulation of substitutions between 
serially sampled sequences can be 
detected.

Developments in the Analysis of MEPs
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2000)

Estimates uniform rate 
(ω) over entire sampling 
period.

Strict molecular clock.

Use M L to optimize 
branch lengths, estimate 
parameters h, ω.
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L(h , ω) = P(D | T, h, ω);
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Multiple rates: sampling times 
not coincident with rate changes.
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Multiple Rates with Dated Tips (MRDT)
(Drummond et al. 2001)
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Estimating evolutionary rates 
Single Rate with Date Tips (SRDT)

� Estimates uniform rate (ω) 
over entire sampling period.

� Strict molecular clock.

� Use ML to optimize branch 
lengths, estimate parameters 
h, ω.

� Maximise 
L(h, ω) = P(D | T, h, ω);
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Modelling Codon Evolution

� The ratio of the rate of nonsynonymous 
substitutions (dN) to the rate of synonymous 
substitutions (dS) 

� This ratio is symbolised by ω
� ω = dN /dS

Modelling Codon Evolution

� Codons evolve under different selective regimes

� Positive, diversifying selection
� dN > dS ω>1

� Negative, purifying selection 
� dN < dS ω<1

� Neutrality
� dN = dS, ω=1



Codon Evolution

� In Nielsen & Yang Codon Model M2, a particular 
site is assumed to evolve under one, and only 
one, of the three classes

� With probabilities p0, p1, p2, for ω=0, ω=1, ω>1
respectively.

� Across the tree a site never changes selection 
class

Nielsen & Yang's (1998) model

ω1=0.0 ω2=1.0 ω3>1.0
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Selection

A new model of codon evolution 
for serially sampled sequences

� Substitution model changes at an a 
priori specified timepoint.

� A site is allowed to be in different 
selection classes before and after the 
split.

� Instantaneous rate matrix and 
transition probabilities change across 
split, but still easy to calculate 
likelihood.
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An HIV-1 env example

• HIV-1 envelope (env) sequences (60 sequences of 660 bases) 
from infected patient.

• sampled at days 0, 214, 671, 699 and 1005.

• Monotherapy with zidovudine was initiated after day 409.



Likelihood Ratio Test

� Estimate parameters (p’s, ω’s, and κ’s) using 
maximum likelihood  for NY‐M2 and fully 
saturated model.
� 8 degrees of freedom difference between models

� ML Estimates
� Nielsen‐Yang M2

� Log Likelihood ‐2873.4

� Saturated Model
� Log Likelihood ‐2855.8

Parameter estimates
ωafter=0 ωafter=1 ωafter=∞ Marginal p

(before)
ωbefore=0 0.425 0.065 0.000 0.490

ωbefore=1 0.368 0.000 0.000 0.368

ωbefore=7.9 0.139 0.000 0.003 0.142

Marginal p
(after)

0.932 0.065 0.003 1.000



Future work

To date, most methods on changing evolutionary parameters 
deal with lineage‐independent changes.

This is suitable for species (and higher taxa) phylogenies.
Forces that influence rates of evolution may act differently in different 
lineages

Not necessarily suitable for intraspecific phylogenies.
External influences act on the population as a whole.
Also true for some taxonomic phylogenies

Viral
load

CD4+
T cells

Asymptomatic PhaseAcute
infection AIDS

Progression of HIV Infection



Changing models as a function of time

Model of 
evolution, Q(t) or 
mutation rate, µ(t)
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Changing models of evolution as a 
function of time (commutable models)
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Commutable models of evolution

If Q changes as a function of time, we can calculate the transition 
probabilities as:

Rodrigo et al. (2008) 
Phil Trans Roy Soc B



Conclusions
� We have developed a codon model of evolution 

that permits:
� Changes to the ratio of non‐synonymous to synonymous 

substitution rates over time.

� Different proportions of sites in each selective class.

� The model is based on a simultaneous change in 
rate across all lineages.
� Consequently, it is better for intraspecific phylogenies than 

interspecific phylogenies.
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