

The Bioinformatics Institute

Modelling the evolution of protein coding sequences sampled from measurably evolving populations

Matthew Goode, Stephane Guindon and

Allen Rodrigo

The Bioinformatics Institute (New Zealand), Department of Statistics, University of Auckland and Allan Wilson Centre for Molecular Ecology and Evolution

Measurably evolving populations (MEPs)

MEP: Any population evolving fast enough so that a statistically significant accumulation of substitutions between serially sampled sequences can be detected.

Rapidly evolving pathogens, e.g., .HIV, FIV, Influenza.

Ancient DNA: so far mostly mitochondrial, e.g.

- Adelie penguins
- Pleistocene bears

Estimating evolutionary rates Single Rate with Date Tips (SRDT)

Estimates uniform rate (ω) over entire sampling period.

Strict molecular clock.

Use ML to optimize branch lengths, estimate parameters h, ω .

Maximise $L(h, \omega) = P(D | T, h, \omega);$

Codon Evolution

ALL A

In Nielsen & Yang Codon Model M2, a particular site is assumed to evolve under one, and only one, of the three classes

With probabilities p0, p1, p2, for $\omega=0$, $\omega=1$, $\omega>1$ respectively.

Across the tree a site never changes selection class

Likelihood Ratio Test

Estimate parameters (p's, ω 's, and κ 's) using maximum likelihood for NY-M2 and fully saturated model.

8 degrees of freedom difference between models

ML Estimates

Nielsen-Yang M2 Log Likelihood -2873.4

Saturated Model

ALLAN WILSON CENTRE

Log Likelihood -2855.8

Parameter estimates

VUV

	$\omega_{after}=0$	$\omega_{after}=1$	$\omega_{after} = \infty$	Marginal <i>p</i>
				(before)
ω_{before} =0	0.425	0.065	0.000	0.490
ω_{before} =1	0.368	0.000	0.000	0.368
ω_{before} =7.9	0.139	0.000	0.003	0.142
Marginal p (after)	0.932	0.065	0.003	1.000

Changing models of evolution as a function of time (commutable models) Commutable models of evolution $\mathbf{Q}(t) \times \mathbf{Q}(t') = \mathbf{Q}(t') \times \mathbf{Q}(t)$ If \mathbf{Q} changes as a function of time, we can calculate the transition probabilities as: $\mathbf{P}_N(T) = e^{\int \mathbf{Q}(t) dt}$

Rodrigo et al. (2008) Phil Trans Roy Soc B

We have developed a codon model of evolution that permits:

Changes to the ratio of non-synonymous to synonymous substitution rates over time.

Different proportions of sites in each selective class.

The model is based on a simultaneous change in rate across all lineages.

Consequently, it is better for intraspecific phylogenies than interspecific phylogenies.

David Bryant Alexei Drummond Joseph Heled Howard Ross

VIIV