Modelling the evolution of protein coding sequences sampled from measurably evolving populations

Matthew Goode, Stephane Guindon and
Allen Rodrigo
The Bioinformatics Institute (New Zealand), Department of Statistics, University of Auckland

HIV env Evolution
Shankarappa et al. 1999

HIV env Evolution

Shankarappa et al. 1999

*

Measurably evolving populations (MEPs)

MEP: Any population evolving fast enough so that a statistically significant accumulation of substitutions between serially sampled sequences can be detected.

Ancient DNA: so far mostly
Rapidly evolving pathogens, e.g., .HIV, FIV, Influenza. mitochondrial, e.g.

Adelie penguins
Pleistocene bears

Developments in the Analysis of MEPs

 not coincident with rate changes.

Multiple Rates with Dated Tips (MRDT

Reconstructing serial genealogies using sUPGMA (Drummond \& Rodrigo, 2000)

1: Uniform Rate (TipDate: Rambaut 2000)

Estimating evolutionary rates

Single Rate with Date Tips (SRDT)

Estimates uniform rate (ω) over entire sampling period.

Strict molecular clock.

Use ML to optimize branch lengths, estimate parameters h, ω.

Maximise
$\mathrm{L}(h, \omega)=\mathrm{P}(\mathrm{D} \mid \mathrm{T}, h, \omega)$;

Measurably evolving populations (MEPs)

Modelling Codon Evolution

The ratio of the rate of nonsynonymous substitutions $\left(d_{N}\right)$ to the rate of synonymous substitutions (d_{s})
This ratio is symbolised by ω
$\omega=d_{N} / d_{S}$

Modelling Codon Evolution

Codons evolve under different selective regimes
Positive, diversifying selection

$$
d_{N}>d_{S} \quad \omega>1
$$

Negative, purifying selection

$$
d_{N}<d_{S} \quad \omega<1
$$

Neutrality

$$
d_{N}=d_{S}, \quad \omega=1
$$

Codon Evolution

In Nielsen \& Yang Codon Model M2, a particular site is assumed to evolve under one, and only one, of the three classes

With probabilities $p 0, p 1, p 2$, for $\omega=0, \omega=1, \omega>1$ respectively.

Across the tree a site never changes selection class

Nielsen \& Yang's (1998) model

$\omega_{1}=0.0$
$\omega_{2}=1.0$

$\omega_{3}>1.0$

A new model of codon evolution for serially sampled sequences

Substitution model changes at an a priori specified timepoint.

A site is allowed to be in different selection classes before and after the split.

Instantaneous rate matrix and transition probabilities change across split, but still easy to calculate likelihood.

CENTRE

Single split

			er Split	
		Negative	Neutral	Positive
	Negative	p1	p2	p3
	Neutral	p4	p5	p6
	Positive	p7	p8	p9

CENTRE

		After Split		
		Negative	Neutral	Positive
	Negative	p^{2}	p0p1	p0p2
	Neutral	p1p0	$\mathrm{p} 1^{2}$	p1p2
	Positive	p2p0	p2p1	p2 ${ }^{2}$

Estimation \&
Hierarchical
Likelihood Ratio Tests

Mean

$$
\begin{aligned}
& p\left(w_{b}=i\right)=p\left(w_{a}=i\right) \\
& p\left(w_{b}=i, w_{a}=j\right)=p\left(w_{a}=i\right) p\left(w_{b}=j\right)
\end{aligned}
$$

An HIV-1 env example

HIV-1 envelope (env) sequences (60 sequences of 660 bases) from infected patient.
sampled at days 0, 214, 671, 699 and 1005.

Monotherapy with zidovudine was initiated after day 409.

Likelihood Ratio Test

Estimate parameters ($p^{\prime} s, \omega^{\prime} s$, and κ^{\prime}) using maximum likelihood for NY-M2 and fully saturated model.

8 degrees of freedom difference between models

ML Estimates

Nielsen-Yang M2
Log Likelihood -2873.4
Saturated Model
Log Likelihood -2855.8

Parameter estimates

	$\omega_{\text {after }}=0$	$\omega_{\text {after }}=1$	$\omega_{\text {after }}=\infty$	Marginal p (before)
$\omega_{\text {before }}=0$	0.425	0.065	0.000	0.490
$\omega_{\text {before }}=1$	0.368	0.000	0.000	0.368
$\omega_{\text {before }}=7.9$	0.139	0.000	0.003	0.142
Marginal (after)	0.932	0.065	0.003	1.000

Future work

To date, most methods on changing evolutionary parameters deal with lineage-independent changes.

This is suitable for species (and higher taxa) phylogenies.
Forces that influence rates of evolution may act differently in different lineages

Not necessarily suitable for intraspecific phylogenies.
External influences act on the population as a whole.
Also true for some taxonomic phylogenies

最LTAN - Whilsog

CunTR

Progression of HIV Infection

Changing models as a function of time

1

Model of

Changing models of evolution as a function of time (commutable models)

Commutable models of evolution $\quad \mathbf{Q}(t) \times \mathbf{Q}\left(t^{\prime}\right)=\mathbf{Q}\left(t^{\prime}\right) \times \mathbf{Q}(t)$

If \mathbf{Q} changes as a function of time, we can calculate the transition probabilities as:

$$
\mathbf{P}_{N}(T)=e^{\int \mathbf{Q}(t) d t}
$$

Rodrigo et al. (2008)
Phil Trans Roy Soc B

Conclusions

We have developed a codon model of evolution that permits:

Changes to the ratio of non-synonymous to synonymous substitution rates over time.
Different proportions of sites in each selective class.

The model is based on a simultaneous change in rate across all lineages.

Consequently, it is better for intraspecific phylogenies than interspecific phylogenies.
. L L E N $=011.605$
CRMTRE

Acknowledgements

David Bryant
Alexei Drummond
Joseph Heled
Howard Ross

